Skip to main content

Advertisement

Log in

Aberrant Autophagy and Parkinsonism: Does Correction Rescue from Disease Progression?

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Information generated from animal models, genome sequencing, and high-throughput technologies provide valuable sequence of events to understand the Parkinson’s disease (PD) pathogenesis. A dynamic equilibrium between biosynthesis and biodegradation of sub-cellular components by ubiquitin proteasome system and autophagy is found to be responsible for sustaining the homeostasis of tyrosine hydroxylase-positive neurons. Autophagy degrades and eliminates α-synuclein, Parkin, ubiquitin, etc., proteins along with damaged cellular components to maintain the homeostasis of the nigrostriatal dopaminergic neurons. Aberrant type II apoptosis is widely implicated in dopaminergic neurodegeneration leading to PD. The current article reviews the elementary role of autophagy in the degradation and elimination of superfluous and aggregated proteins and impaired mitochondria. The article also recapitulates the information, which implicated the role of aberrant autophagy in toxin-induced Parkinsonism. Moreover, the review sheds light on whether or not targeting the defective autophagy could reinstate the normal functioning of dopaminergic neurons, which could ultimately rescue from PD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Galluzzi L, Vicencio JM, Kepp O, Tasdemir E, Maiuri MC, Kroemer G (2008) To die or not to die: that is the autophagic question. Curr Mol Med 8:78–91

    CAS  PubMed  Google Scholar 

  2. Lynch-Day MA, Mao K, Wang K, Zhao M, Klionsky DJ (2012) The role of autophagy in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009357

    PubMed Central  PubMed  Google Scholar 

  3. Osellame LD, Duchen MR (2014) Quality control gone wrong: mitochondria, lysosomal storage disorders and neurodegeneration. Br J Pharmacol 171:1958–1972

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Ebrahimi-Fakhari D, Saidi LJ, Wahlster L (2013) Molecular chaperones and protein folding as therapeutic targets in Parkinson’s disease and other synucleinopathies. Acta Neuropathol Commun 1:79

    PubMed Central  PubMed  Google Scholar 

  5. Pallauf K, Rimbach G (2013) Autophagy, polyphenols and healthy ageing. Ageing Res Rev 12:237–252

    CAS  PubMed  Google Scholar 

  6. Pan PY, Yue Z (2014) Genetic causes of Parkinson’s disease and their links to autophagy regulation. Parkinsonism Relat Disord Suppl 1:S154–S157

    Google Scholar 

  7. Singh MP, Patel S, Dikshit M, Gupta YK (2006) Contribution of genomics and proteomics in understanding the role of modifying factors in Parkinson’s disease. Indian J Biochem Biophys 43:69–81

    CAS  PubMed  Google Scholar 

  8. Gupta SP, Yadav S, Singhal NK, Tiwari MN, Mishra SK, Singh MP (2014) Does restraining nitric oxide biosynthesis rescue from toxins-induced Parkinsonism and sporadic Parkinson’s disease? Mol Neurobiol 49:262–275

    CAS  PubMed  Google Scholar 

  9. Yadav S, Dixit A, Agrawal S, Singh A, Srivastava G, Singh AK, Srivastava PK, Prakash O, Singh MP (2012) Rodent models and contemporary molecular techniques: notable feats yet incomplete explanations of Parkinson’s disease pathogenesis. Mol Neurobiol 46:495–512

    CAS  PubMed  Google Scholar 

  10. Dagda RK, Banerjee TD, Janda E (2013) How Parkinsonian toxins dysregulate the autophagy machinery. Int J Mol Sci 14:22163–22189

    PubMed Central  PubMed  Google Scholar 

  11. Singhal NK, Srivastava G, Agrawal S, Jain SK, Singh MP (2012) Melatonin as a neuroprotective agent in the rodent models of Parkinson’s disease: is it all set to irrefutable clinical translation? Mol Neurobiol 45:186–199

    CAS  PubMed  Google Scholar 

  12. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    CAS  PubMed  Google Scholar 

  13. Dehay B, Bové J, Rodríguez-Muela N, Perier C, Recasens A, Boya P, Vila M (2010) Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci 30:12535–12544

    CAS  PubMed  Google Scholar 

  14. Jin SM, Youle RJ (2013) The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 9:1750–1757

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Schapira AHV, Tolosa E (2010) Molecular and clinical prodrome of Parkinson disease: implications for treatment. Nat Rev Neurol 6:309–317

    CAS  PubMed  Google Scholar 

  17. Cheung ZH, Ip NY (2011) Autophagy deregulation in neurodegenerative diseases recent advances and future perspectives. J Neurochem 118:317–325

    CAS  PubMed  Google Scholar 

  18. Nistico R, Mehdawy B, Piccirilli S, Mercuri N (2011) Paraquat and rotenone-induced models of Parkinson’s disease. Int J Immunopathol Pharmacol 24:313–322

    CAS  PubMed  Google Scholar 

  19. Dixit A, Srivastava G, Verma D, Mishra M, Singh PK, Prakash O, Singh MP (2013) Minocycline, levodopa and MnTMPyP induced changes in the mitochondrial proteome profile of MPTP and maneb and paraquat mice models of Parkinson’s disease. Biochim Biophys Acta 1832:1227–1240

    CAS  PubMed  Google Scholar 

  20. Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496:372–376

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Nagatsu T, Sawada M (2006) Cellular and molecular mechanisms of Parkinson’s disease: neurotoxins, causative genes, and inflammatory cytokines. Cell Mol Neurobiol 26:781–802

    CAS  PubMed  Google Scholar 

  22. Lee HJ, Lee SJ (2002) Characterization of cytoplasmic alpha-synuclein aggregates. Fibril formation is tightly linked to the inclusion-forming process in cells. J Biol Chem 277:48976–48983

    CAS  PubMed  Google Scholar 

  23. Ciechanover A, Orian A, Schwartz AL (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22:442–451

    CAS  PubMed  Google Scholar 

  24. Yang F, Yang YP, Mao CJ, Liu L, Zheng HF, Hu LF, Liu CF (2013) Crosstalk between the proteasome system and autophagy in the clearance of α-synuclein. Acta Pharmacol Sin 34:674–680

    PubMed Central  PubMed  Google Scholar 

  25. Dulovic M, Jovanovic M, Xilouri M, Stefanis L, Harhaji-Trajkovic L, Kravic-Stevovic T, Paunovic V, Ardah MT, El-Agnaf OM, Kostic V, Markovic I, Trajkovic V (2014) The protective role of AMP-activated protein kinase in alpha-synuclein neurotoxicity in vitro. Neurobiol Dis 63:1–11

    CAS  PubMed  Google Scholar 

  26. Kabuta T, Furuta A, Aoki S, Furuta K, Wada K (2008) Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J Biol Chem 283:23731–23738

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Kabuta T, Setsuie R, Mitsui T, Kinugawa A, Sakurai M, Aoki S, Uchida K, Wada K (2008) Aberrant molecular properties shared by familial Parkinson’s disease-associated mutant UCH-L1 and carbonyl-modified UCH-L1. Hum Mol Genet 17:1482–1496

    CAS  PubMed  Google Scholar 

  28. Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, Adame A, Wyss-Coray T, Masliah E (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci 29:13578–13588

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Yu S, Li X, Liu G, Han J, Zhang C, Li Y, Xu S, Liu C, Gao Y, Yang H, Uéda K, Chan P (2007) Extensive nuclear localization of alpha-synuclein in normal rat brain neurons revealed by a novel monoclonal antibody. Neuroscience 145:539–555

    CAS  PubMed  Google Scholar 

  30. Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Südhof TC (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329:1663–1667

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Bonini NM, Giasson BI (2005) Snaring the function of alpha-synuclein. Cell 123:359–361

    CAS  PubMed  Google Scholar 

  32. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the a-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    CAS  PubMed  Google Scholar 

  33. Wu AG, Wong VK, Xu SW, Chan WK, Ng CI, Liu L, Law BY (2013) Onjisaponin B derived from Radix Polygalae enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 Cells. Int J Mol Sci 14:22618–22641

    PubMed Central  PubMed  Google Scholar 

  34. Song JX, Lu JH, Liu LF, Chen LL, Durairajan SS, Yue Z, Zhang HQ, Li M (2013) HMGB1 is involved in autophagy inhibition caused by SNCA/α-synuclein overexpression: a process modulated by the natural autophagy inducer corynoxine B. Autophagy 10:1–11

    Google Scholar 

  35. Clayton DF, George JM (1998) The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci 21:249–254

    CAS  PubMed  Google Scholar 

  36. Saftig P (2005) Lysosomal membrane proteins. In: Saftif P (ed) Medical intelligence unit, Lysosomesth edn. Springer, USA, pp 37–49

    Google Scholar 

  37. Bandyopadhyay U, Cuervo AM (2008) Entering the lysosome through a transient gate by chaperone-mediated autophagy. Autophagy 4:1101–1103

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, Hodara R, Fredenburg R, Wu DC, Follenzi A, Dauer W, Przedborski S, Ischiropoulos H, Lansbury PT, Sulzer D, Cuervo AM (2008) Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 118:777–788

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Bandyopadhyay U, Cuervo AM (2007) Chaperone-mediated autophagy in aging and neurodegeneration: lessons from alpha-synuclein. Exp Gerontol 42:120–128

    PubMed  Google Scholar 

  40. Munoz P, Huenchuguala S, Paris I, Segura-Aguilar J (2012) Dopamine oxidation and autophagy. Park Dis 2012:920953

    Google Scholar 

  41. Yang Q, Mao Z (2010) Dysregulation of autophagy and Parkinson’s disease: the MEF2D link. Apoptosis 15:1410–1414

    CAS  PubMed  Google Scholar 

  42. Gao L, She H, Li W, Zeng J, Zhu J, Jones DP, Mao Z, Gao G, Yang Q (2014) Oxidation of survival factor MEF2D in neuronal death and Parkinson’s disease. Antioxid Redox Signal. doi:10.1089/ars.2013.5399

    Google Scholar 

  43. Sala G, Arosio A, Stefanoni G, Melchionda L, Riva C, Marinig D, Brighina L, Ferrarese C (2013) Rotenone upregulates alpha-synuclein and myocyte enhancer factor 2D independently from lysosomal degradation inhibition. Biomed Res Int 2013:846725

    PubMed Central  PubMed  Google Scholar 

  44. Xilouri M, Brekk OR, Kirik D, Stefanis L (2013) LAMP2A as a therapeutic target in Parkinson disease. Autophagy 9:2166–2168

    CAS  PubMed  Google Scholar 

  45. Chu Y, Mickiewicz AL, Kordower JH (2011) α-Synuclein aggregation reduces nigral myocyte enhancer factor-2D in idiopathic and experimental Parkinson's disease. Neurobiol Dis 41:71–82

    CAS  PubMed  Google Scholar 

  46. Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T (2003) Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 116:1679–1688

    CAS  PubMed  Google Scholar 

  47. Isidoro C, Biagioni F, Giorgi FS, Fulceri F, Paparelli A, Fornai F (2009) The role of autophagy on the survival of dopamine neurons. Curr Top Med Chem 9:869–879

    CAS  PubMed  Google Scholar 

  48. Dagda RK, Chu CT (2009) Mitochondrial quality control: insights on how Parkinson’s disease related genes PINK1, parkin, and Omi/HtrA2 interact to maintain mitochondrial homeostasis. J Bioenerg Biomembr 41:473–479

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Chen Y, Dorn GW 2nd (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340:471–475

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Johnson CW, Melia TJ, Yamamoto A (2012) Modulating macroautophagy: a neuronal perspective. Future Med Chem 4:1715–1731

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Cao Y, Klionsky DJ (2007) Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res 17:839–849

    CAS  PubMed  Google Scholar 

  52. Gelino S, Hansen M (2012) Autophagy-an emerging anti-aging mechanism. J Clin Exp Pathol S4:006. doi:10.4172/2161-0681.S4-006

  53. Reggiori F, Tucker KA, Stromhaug PE, Klionsky DJ (2004) The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell 6:79–90

    CAS  PubMed  Google Scholar 

  54. Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM, Ravikumar B, Imarisio S, Brown S, O'Kane CJ, Rubinsztein DC (2010) α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol 190:1023–1037

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Maiese K, Chong ZZ, Shang YC, Wang S (2013) mTOR: on target for novel therapeutic strategies in the nervous system. Trends Mol Med 19:51–60

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Gao H, Yang W, Qi Z, Lu L, Duan C, Zhao C, Yang H (2012) DJ-1 protects dopaminergic neurons against rotenone-induced apoptosis by enhancing ERK-dependent mitophagy. J Mol Biol 423:232–248

    CAS  PubMed  Google Scholar 

  58. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13:805–811

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Mizushima N, Ohsumi Y, Yoshimori T (2002) Autophagosome formation in mammalian cells. Cell Struct Funct 27:421–429

    PubMed  Google Scholar 

  61. Zhu B, Xu F, Li J, Shuai J, Li X, Fang W (2011) Porcine circovirus type 2 explores the autophagic machinery for replication in PK-15 cells. Virus Res 163:476–485

    PubMed  Google Scholar 

  62. Dehay B, Martinez-Vicente M, Ramirez A, Perier C, Klein C, Vila M, Bezard E (2012) Lysosomal dysfunction in Parkinson disease: ATP13A2 gets into the groove. Autophagy 8:1389–1391

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Manzoni C, Lewis PA (2013) Dysfunction of the autophagy/lysosomal degradation pathway is a shared feature of the genetic synucleinopathies. FASEB J 27:3424–3429

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Ejlerskov P, Rasmussen I, Nielsen TT, Bergström AL, Tohyama Y, Jensen PH, Vilhardt F (2013) Tubulin polymerization-promoting protein (TPPP/p25α) promotes unconventional secretion of α-synuclein through exophagy by impairing autophagosome-lysosome fusion. J Biol Chem 288:17313–17335

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Jiang P, Gan M, Yen SH (2013) Dopamine prevents lipid peroxidation-induced accumulation of toxic α-synuclein oligomers by preserving autophagy-lysosomal function. Front Cell Neurosci 7:81

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Crabtree D, Dodson M, Ouyang X, Boyer-Guittaut M, Liang Q, Ballestas ME, Fineberg N, Zhang J (2014) Over-expression of an inactive mutant cathepsin D increases endogenous alpha-synuclein and cathepsin B activity in SH-SY5Y cells. J Neurochem 128:950–961

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Tanik SA, Schultheiss CE, Volpicelli-Daley LA, Brunden KR, Lee VM (2013) Lewy body-like α-synuclein aggregates resist degradation and impair macroautophagy. J Biol Chem 288:15194–15210

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Yue Z, Yang XW (2013) Dangerous duet: LRRK2 and α-synuclein jam at CMA. Nat Neurosci 16:375–377

    CAS  PubMed  Google Scholar 

  69. Hebron ML, Lonskaya I, Moussa CE (2013) Tyrosine kinase inhibition facilitates autophagic SNCA/α-synuclein clearance. Autophagy 9:1249–1250

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Björklund A (2013) TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc Natl Acad Sci U S A 110:E1817–E1826

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Chen D, Pang S, Feng X, Huang W, Hawley RG, Yan B (2013) Genetic analysis of the ATG7 gene promoter in sporadic Parkinson’s disease. Neurosci Lett 534:193–198

    CAS  PubMed  Google Scholar 

  72. Chen D, Zhu C, Wang X, Feng X, Pang S, Huang W, Hawley RG, Yan B (2013) A novel and functional variant within the ATG5 gene promoter in sporadic Parkinson’s disease. Neurosci Lett 538:49–53

    CAS  PubMed  Google Scholar 

  73. Watanabe Y, Tatebe H, Taguchi K, Endo Y, Tokuda T, Mizuno T, Nakagawa M, Tanaka M (2012) p62/SQSTM1-dependent autophagy of Lewy body-like α-synuclein inclusions. PLoS ONE 7:e52868

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Zheng HF, Yang YP, Hu LF, Wang MX, Wang F, Cao LD, Li D, Mao CJ, Xiong KP, Wang JD, Liu CF (2013) Autophagic impairment contributes to systemic inflammation-induced dopaminergic neuron loss in the midbrain. PLoS ONE 8:e70472

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Lefebvre V, Du Q, Baird S, Ng AC, Nascimento M, Campanella M, McBride HM, Screaton RA (2013) Genome-wide RNAi screen identifies ATPase inhibitory factor 1 (ATPIF1) as essential for PARK2 recruitment and mitophagy. Autophagy 9:1770–1779

    CAS  PubMed  Google Scholar 

  76. Costa AC, Loh SH, Martins LM (2013) Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson’s disease. Cell Death Dis 4:e467

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Arena G, Gelmetti V, Torosantucci L, Vignone D, Lamorte G, De Rosa P, Cilia E, Jonas EA, Valente EM (2013) PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage. Cell Death Differ 20:920–930

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque ME, McBride HM, Park DS, Fon EA (2012) Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 13:378–385

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Saha S, Liu-Yesucevitz L, Wolozin B (2014) Regulation of autophagy by LRRK2 in Caenorhabditis elegans. Neurodegener Dis 13:110–113

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Gómez-Suaga P, Hilfiker S (2012) LRRK2 as a modulator of lysosomal calcium homeostasis with downstream effects on autophagy. Autophagy 8:692–693

    PubMed  Google Scholar 

  82. Thomas KJ, McCoy MK, Blackinton J, Beilina A, van der Brug M, Sandebring A, Miller D, Maric D, Cedazo-Minguez A, Cookson MR (2011) DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum Mol Genet 20:40–50

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Irrcher I, Aleyasin H, Seifert EL, Hewitt SJ, Chhabra S, Phillips M, Lutz AK, Rousseaux MW, Bevilacqua L, Jahani-Asl A, Callaghan S, MacLaurin JG, Winklhofer KF, Rizzu P, Rippstein P, Kim RH, Chen CX, Fon EA, Slack RS, Harper ME, McBride HM, Mak TW, Park DS (2010) Loss of the Parkinson’s disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum Mol Genet 19:3734–3746

    CAS  PubMed  Google Scholar 

  84. Grünewald AK, Arns B, Meier B, Brockmann K, Tadic V, Klein C (2013) Does uncoupling protein 2 expression qualify as marker of disease status in LRRK2-associated PD? Antioxid Redox Signal. doi:10.1089/ars.2013.5737

    Google Scholar 

  85. Verma M, Steer EK, Chu CT (2013) ERKed by LRRK2: a cell biological perspective on hereditary and sporadic Parkinson’s disease. Biochim Biophys Acta. doi:10.1016/j.bbadis.2013.11.005

    PubMed Central  Google Scholar 

  86. Yamano K, Youle RJ (2013) PINK1 is degraded through the N-end rule pathway. Autophagy 9:1758–1769

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, Taanman JW (2010) Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/Parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 19:4861–4870

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Ziviani E, Tao RN, Whitworth AJ (2010) Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci U S A 107:5018–5023

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Okatsu K, Uno M, Koyano F, Go E, Kimura M, Oka T, Tanaka K, Matsuda N (2013) A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment. J Biol Chem 288:36372–36384

    PubMed Central  CAS  PubMed  Google Scholar 

  90. de Vries RL, Gilkerson RW, Przedborski S, Schon EA (2012) Mitophagy in cells with mtDNA mutations: being sick is not enough. Autophagy 8:699–700

    PubMed  Google Scholar 

  91. Batlevi Y, La Spada AR (2011) Mitochondrial autophagy in neural function, neurodegenerative disease, neuron cell death, and aging. Neurobiol Dis 43:46–51

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Vincow ES, Merrihew G, Thomas RE, Shulman NJ, Beyer RP, MacCoss MJ, Pallanck LJ (2013) The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc Natl Acad Sci U S A 110:6400–6405

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Narendra D, Walker JE, Youle R (2012) Mitochondrial quality control mediated by PINK1 and Parkin: links to Parkinsonism. Cold Spring Harb Perspect Biol 4:11

    Google Scholar 

  94. Bertolin G, Ferrando-Miguel R, Jacoupy M, Traver S, Grenier K, Greene AW, Dauphin A, Waharte F, Bayot A, Salamero J, Lombès A, Bulteau AL, Fon EA, Brice A, Corti O (2013) The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance. Autophagy 9:1801–1817

    CAS  PubMed  Google Scholar 

  95. Becker D, Richter J, Tocilescu MA, Przedborski S, Voos W (2012) PINK1 kinase and its membrane potential (delta ψ)-dependent cleavage product both localize to outer mitochondrial membrane by unique targeting mode. J Biol Chem 287:22969–22987

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Lazarou M, Jin SM, Kane LA, Youle RJ (2012) Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell 22:320–333

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Sun Y, Vashisht AA, Tchieu J, Wohlschlegel JA, Dreier L (2012) Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy. J Biol Chem 287:40652–40660

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131

    CAS  PubMed  Google Scholar 

  99. Gegg ME, Schapira AH (2011) PINK1-parkin-dependent mitophagy involves ubiquitination of mitofusins 1 and 2: implications for Parkinson disease pathogenesis. Autophagy 7:243–245

    PubMed Central  PubMed  Google Scholar 

  100. Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S, Hattori N (2013) PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep 2:1002

    Google Scholar 

  101. Li Y, Wan OW, Xie W, Chung KK (2011) P32 regulates mitochondrial morphology and dynamics through parkin. Neuroscience 199:346–358

    CAS  PubMed  Google Scholar 

  102. Mader BJ, Pivtoraiko VN, Flippo HM, Klocke BJ, Roth KA, Mangieri LR, Shacka JJ (2012) Rotenone inhibits autophagic flux prior to inducing cell death. ACS Chem Neurosci 3:1063–1072

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Chu CT, Bayır H, Kagan VE (2014) LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons: implications for Parkinson disease. Autophagy 10:376–378

    CAS  PubMed  Google Scholar 

  104. Michiorri S, Gelmetti V, Giarda E, Lombardi F, Romano F, Marongiu R, Nerini-Molteni S, Sale P, Vago R, Arena G, Torosantucci L, Cassina L, Russo MA, Dallapiccola B, Valente EM, Casari G (2010) The Parkinson-associated protein PINK1 interacts with Beclin 1 and promotes autophagy. Cell Death Differ 17:962–974

    CAS  PubMed  Google Scholar 

  105. Tong MM, Jiang CA (2013) Autophagy promoted by Parkinson’s disease related protein PINK1. Sichuan Da Xue Xue Bao Yi Xue Ban 44:366–370

    CAS  PubMed  Google Scholar 

  106. Liu K, Shi N, Sun Y, Zhang T, Sun X (2013) Therapeutic effects of rapamycin on MPTP-induced Parkinsonism in mice. Neurochem Res 38:201–207

    CAS  PubMed  Google Scholar 

  107. Li XZ, Chen XP, Zhao K, Bai LM, Zhang H, Zhou XP (2013) Therapeutic effects of valproate combined with lithium carbonate on MPTP-induced Parkinsonism in mice: possible mediation through enhanced autophagy. Int J Neurosci 123:73–79

    CAS  PubMed  Google Scholar 

  108. Mak SK, McCormack AL, Manning-Bog AB, Cuervo AM, Di Monte DA (2010) Lysosomal degradation of alpha-synuclein in vivo. J Biol Chem 285:13621–13629

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Wills J, Credle J, Oaks AW, Duka V, Lee JH, Jones J, Sidhu A (2012) Paraquat, but not maneb, induces synucleinopathy and tauopathy in striata of mice through inhibition of proteasomal and autophagic pathways. PLoS ONE 7:e30745

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Filomeni G, Graziani I, De Zio D, Dini L, Centonze D, Rotilio G, Ciriolo MR (2012) Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson’s disease. Neurobiol Aging 33:767–785

    CAS  PubMed  Google Scholar 

  111. Marin C, Aguilar E (2011) In vivo 6-OHDA-induced neurodegeneration and nigral autophagic markers expression. Neurochem Int 58:521–526

    CAS  PubMed  Google Scholar 

  112. Xia LP, Li LY, Fei XF, Liang ZQ (2010) Autophagy is involved in 6-OHDA-induced dopaminergic cell death. Nan Fang Yi Ke Da Xue Xue Bao 30:2649–2651

    PubMed  Google Scholar 

  113. Fei XF, Qin ZH, Xiang B, Li LY, Han F, Fukunaga K, Liang ZQ (2009) Olomoucine inhibits cathepsin L nuclear translocation, activates autophagy and attenuates toxicity of 6-hydroxydopamine. Brain Res 1264:85–97

    CAS  PubMed  Google Scholar 

  114. Li L, Wang X, Fei X, Xia L, Qin Z, Liang Z (2011) Parkinson’s disease involves autophagy and abnormal distribution of cathepsin L. Neurosci Lett 489:62–67

    CAS  PubMed  Google Scholar 

  115. Cheung ZH, Ip NY (2009) The emerging role of autophagy in Parkinson’s disease. Mol Brain 2:29

    PubMed Central  PubMed  Google Scholar 

  116. Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura M, Komatsu M, Hattori N, Tanaka K (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Kharbanda S, Saxena S, Yoshida K, Pandey P, Kaneki M, Wang Q, Cheng K, Chen YN, Campbell A, Sudha T, Yuan ZM, Narula J, Weichselbaum R, Nalin C, Kufe D (2000) Translocation of SAPK/JNK to mitochondria and interaction with Bcl-x (L) in response to DNA damage. J Biol Chem 275:322–327

    CAS  PubMed  Google Scholar 

  118. Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11:385–396

    CAS  PubMed  Google Scholar 

  119. Ganley IG, du Lam H, Wang J, Ding X, Chen S, Jiang X (2009) ULK1. ATG13. FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284:12297–12305

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Lan DM, Liu FT, Zhao J, Chen Y, Wu JJ, Ding ZT, Yue ZY, Ren HM, Jiang YP, Wang J (2012) Effect of trehalose on PC12 cells overexpressing wild-type or A53T mutant α-synuclein. Neurochem Res 37:2025–2032

    CAS  PubMed  Google Scholar 

  121. Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, Ong CN, Codogno P, Shen HM (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 285:10850–10861

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Du Y, Yang D, Li L, Luo G, Li T, Fan X, Wang Q, Zhang X, Wang Y, Le W (2009) An insight into the mechanistic role of p53-mediated autophagy induction in response to proteasomal inhibition-induced neurotoxicity. Autophagy 5:663–675

    CAS  PubMed  Google Scholar 

  123. Lu JH, Tan JQ, Durairajan SS, Liu LF, Zhang ZH, Ma L, Shen HM, Chan HY, Li M (2012) Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy. Autophagy 8:98–108

    CAS  PubMed  Google Scholar 

  124. Congdon EE, Wu JW, Myeku N, Figueroa YH, Herman M, Marinec PS, Gestwicki JE, Dickey CA, Yu WH, Duff KE (2012) Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 8:609–622

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Rott R, Szargel R, Shani V, Bisharat S, Engelender S (2013) α-Synuclein ubiquitination and novel therapeutic targets for Parkinson’s disease. CNS Neurol Disord Drug Targets. doi:10.2174/18715273113126660195

    Google Scholar 

  126. Sala G, Stefanoni G, Arosio A, Riva C, Melchionda L, Saracchi E, Fermi S, Brighina L, Ferrarese C (2014) Reduced expression of the chaperone-mediated autophagy carrier hsc70 protein in lymphomonocytes of patients with Parkinson’s disease. Brain Res 1546:46–52

    CAS  PubMed  Google Scholar 

  127. Wang P, Li B, Zhou L, Fei E, Wang G (2011) The KDEL receptor induces autophagy to promote the clearance of neurodegenerative disease-related proteins. Neuroscience 190:43–55

    CAS  PubMed  Google Scholar 

  128. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC (2007) Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 282:5641–5652

    CAS  PubMed  Google Scholar 

  129. Orrenius S, Kaminskyy VO, Zhivotovsky B (2013) Autophagy in toxicology: cause or consequence? Annu Rev Pharmacol Toxicol 53:275–297

    CAS  PubMed  Google Scholar 

  130. Agrawal S, Singh A, Tripathi P, Mishra M, Singh PK, Singh MP (2014) Cypermethrin-induced nigrostriatal dopaminergic neurodegeneration alters the mitochondrial function: a proteomics study. Mol Neurobiol. doi:10.1007/s12035-014-8696-7

    Google Scholar 

Download references

Acknowledgments

Authors acknowledge the Council of Scientific and Industrial Research (CSIR), Department of Science and Technology, Department of Biotechnology, and University Grants Commission, New Delhi, India for providing financial assistance to Abhishek Kumar Mishra, Mohd Sami ur Rasheed, Manish Kumar Tripathi, and Anubhuti Dixit, respectively, in the form of fellowship. The financial support from the CSIR in the form of a network program “Neurodegenerative Diseases: Causes and Corrections (BSC0115: miND)” is gratefully acknowledged. The CSIR-IITR communication number of this article is 3,207.

Conflict of Interest

Authors do not have any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Pratap Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A.K., ur Rasheed, M.S., Shukla, S. et al. Aberrant Autophagy and Parkinsonism: Does Correction Rescue from Disease Progression?. Mol Neurobiol 51, 893–908 (2015). https://doi.org/10.1007/s12035-014-8744-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8744-3

Keywords

Navigation