Skip to main content
Log in

Developmental Hypothyroxinemia and Hypothyroidism Reduce Proliferation of Cerebellar Granule Neuron Precursors in Rat Offspring by Downregulation of the Sonic Hedgehog Signaling Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Iodine deficiency (ID)-induced hypothyroxinemia and hypothyroidism during development result in dysfunction of the central nervous system, affecting psychomotor and motor function, although the underlying mechanisms causing these alterations are still unclear. Therefore, our aim is to study the effects of developmental hypothyroxinemia, caused by mild ID, and developmental hypothyroidism, caused by severe ID or methimazole (MMZ), on the proliferation of cerebellar granule neuron precursors (CGNPs), an excellent experimental model of cerebellar development and function. The sonic hedgehog (Shh) signaling pathway is essential for CGNP proliferation, and as such, its activation is also investigated here. A maternal hypothyroxinemia model was established in Wistar rats by administrating a mild ID diet, and two maternal hypothyroidism models were developed either by administrating a severe ID diet or MMZ water. Our results showed that hypothyroxinemia and hypothyroidism reduced proliferation of CGNPs on postnatal day (PN) 7, PN14, and PN21. Accordingly, the mean intensity of proliferating cell nuclear antigen and Ki67 nuclear antigen immunofluorescence was reduced in the mild ID, severe ID, and MMZ groups. Moreover, maternal hypothyroxinemia and hypothyroidism reduced expression of the Shh signaling pathway on PN7, PN14, and PN21. Our study supports the hypothesis that developmental hypothyroxinemia induced by mild ID, and hypothyroidism induced by severe ID or MMZ, reduce the proliferation of CGNPs, which may be ascribed to the downregulation of the Shh signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Puig-Domingo M, Vila L (2013) The implications of iodine and its supplementation during pregnancy in fetal brain development. Curr Clin Pharmacol 8:97–109

    Article  CAS  PubMed  Google Scholar 

  2. Zimmermann MB (2009) Iodine deficiency. Endocr Rev 30:376–408

    Article  CAS  PubMed  Google Scholar 

  3. Skeaff SA (2011) Iodine deficiency in pregnancy: the effect on neurodevelopment in the child. Nutrients 3:265–273

    Article  PubMed Central  PubMed  Google Scholar 

  4. Berbel P, Obregon MJ, Bernal J, Escobar del Rey F, Morreale de Escobar G (2007) Iodine supplementation during pregnancy: a public health challenge. Trends Endocrinol Metab 18:338–343

    Article  CAS  PubMed  Google Scholar 

  5. Glinoer D (2001) Potential consequences of maternal hypothyroidism on the offspring: evidence and implications. Horm Res 55:109–114

    Article  CAS  PubMed  Google Scholar 

  6. Tang Z, Liu W, Yin H, Wang P, Dong J, Wang Y, Chen J (2007) Investigation of intelligence quotient and psychomotor development in schoolchildren in areas with different degrees of iodine deficiency. Asia Pac J Clin Nutr 16:731–737

    PubMed  Google Scholar 

  7. Lavado-Autric R, Ausó E, García-Velasco JV, Arufe Mdel C, Escobar del Rey F, Berbel P, Morreale de Escobar G (2003) Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny. J Clin Invest 111:1073–1082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Pop VJ, Kuijpens JL, van Baar AL, Verkerk G, van Son MM, de Vijlder JJ, Vulsma T, Wiersinga WM, Drexhage HA, Vader HL (1999) Low maternal free thyroxine concentrations during early pregnancy are associated with impaired psychomotor development in infancy. Clin Endocrinol (Oxf) 50:149–155

    Article  CAS  Google Scholar 

  9. Morreale de Escobar G, Obregon MJ, Escobar del Rey F (2004) Role of thyroid hormone during early brain development. Eur J Endocrinol 151:U25–U37

    Article  CAS  PubMed  Google Scholar 

  10. Morreale de Escobar G, Obregon MJ, Escobar del Rey F (2000) Is neuropsychological development related to maternal hypothyroidism or to maternal hypothyroxinemia? J Clin Endocrinol Metab 85:3975–3987

    CAS  PubMed  Google Scholar 

  11. Brooks VB (1984) Cerebellar functions in motor control. Hum Neurobiol 2:251–260

    CAS  PubMed  Google Scholar 

  12. Hibi M, Shimizu T (2012) Development of the cerebellum and cerebellar neural circuits. Dev Neurobiol 72(3):282–301

    Article  PubMed  Google Scholar 

  13. Sillitoe RV, Joyner AL (2007) Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol 23:549–577

    Article  CAS  PubMed  Google Scholar 

  14. Vaillant C, Monard D (2009) SHH pathway and cerebellar development. Cerebellum 8(3):291–301

    Article  PubMed  Google Scholar 

  15. Behesti H, Marino S (2009) Cerebellar granule cells: insights into proliferation, differentiation, and role in medulloblastoma pathogenesis. Int J Biochem Cell Biol 41(3):435–445

    Article  CAS  PubMed  Google Scholar 

  16. Kumar K, Patro N, Patro I (2013) Impaired structural and functional development of cerebellum following gestational exposure of delta methrin in rats: role of reelin. Cell Mol Neurobiol 33(5):731–746

    Article  CAS  PubMed  Google Scholar 

  17. Kenney AM, Cole MD, Rowitch DH (2003) N-Myc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130(1):15–28

    Article  CAS  PubMed  Google Scholar 

  18. Dahmane N, Ruizi Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126(14):3089–3100

    PubMed  Google Scholar 

  19. Manto MU, Jissendi P (2012) Cerebellum: links between development, developmental disorders and motor learning. Front Neuroanat 6:1

    PubMed Central  PubMed  Google Scholar 

  20. Corrales JD, Rocco GL, Blaess S, Guo Q, Joyner AL (2004) Spatial pattern of sonic hedgehog signaling through Gli genes during cerebellum development. Development 131(22):5581–5590

    Article  CAS  PubMed  Google Scholar 

  21. Oliver TG, Grasfeder LL, Carroll AL, Kaiser C, Gillingham CL, Lin SM, Wickramasinghe R, Scott MP, Wechsler-Reya RJ (2003) Transcriptional profiling of the sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci U S A 100(12):7331–7336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Yun JS, Rust JM, Ishimaru T, Díaz E (2007) A novel role of the Mad family member Mad3 in cerebellar granule neuron precursor proliferation. Mol Cell Biol 27(23):8178–8189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kimura-Kuroda J, Nagata I, Negishi-Kato M, Kuroda Y (2002) Thyroid hormone-dependent development of mouse cerebellar Purkinje cells in vitro. Brain Res Dev Brain Res 137:55–65

    Article  CAS  PubMed  Google Scholar 

  24. Koibuchi N, Chin WW (2000) Thyroid hormone action and brain development. Trends Endocrinol Metab 11:123–128

    Article  CAS  PubMed  Google Scholar 

  25. Portella AC, Carvalho F, Faustino L, Wondisford FE, Ortiga-Carvalho TM, Gomes FC (2010) Thyroid hormone receptor beta mutation causes severe impairment of cerebellar development. Mol Cell Neurosci 44(1):68–77

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Wei W, Wang Y, Dong J, Song B, Min H, Teng W, Chen J (2013) Neurotoxicity of developmental hypothyroxinemia and hypothyroidism in rats: impairments of long-term potentiation are mediated by phosphatidylinositol 3-kinase signaling pathway. Toxicol Appl Pharmacol 271(2):257–265

    Article  CAS  PubMed  Google Scholar 

  27. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    CAS  PubMed  Google Scholar 

  28. Mills J, Niewmierzycka A, Oloumi A, Rico B, St-Arnaud R, Mackenzie IR, Mawji NM, Wilson J, Reichardt LF, Dedhar S (2006) Critical role of integrin-linked kinase in granule cell precursor proliferation and cerebellar development. J Neurosci 26(3):830–840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Argenti B, Gallo R, Di Marcotullio L, Ferretti E, Napolitano M, Canterini S, De Smaele E, Greco A, Fiorenza MT, Maroder M, Screpanti I, Alesse E, Gulino A (2005) Hedgehog antagonist REN(KCTD11) regulates proliferation and apoptosis of developing granule cell progenitors. J Neurosci 25(36):8338–8346

    Article  CAS  PubMed  Google Scholar 

  30. Kenney AM, Widlund HR, Rowitch DH (2004) Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development 131(1):217–228

    Article  CAS  PubMed  Google Scholar 

  31. Kawamori A, Shimaji K, Yamaguchi M (2013) Control of e2f1 and PCNA by Drosophila transcription factor DREF. Genesis. doi: 10.1002/dvg.22419

  32. Vermiglio F, Lo Presti VP, Moleti M, Sidoti M, Tortorella G, Scaffidi G, Castagna MG, Mattina F, Violi MA, Crisà A, Artemisia A, Trimarchi F (2004) Attention deficit and hyperactivity disorders in the offspring of mothers exposed to mild–moderate iodine deficiency: a possible novel iodine deficiency disorder in developed countries. J Clin Endocrinol Metab 89:6054–6060

    Article  CAS  PubMed  Google Scholar 

  33. Pedraza PE, Obregon MJ, Escobar-Morreale HF, del Rey FE, de Escobar GM (2006) Mechanisms of adaptation to iodine deficiency in rats: thyroid status is tissue specific. Its relevance for man. Endocrinology 147:2098–2108

    Article  CAS  PubMed  Google Scholar 

  34. Dunn JT (1995) Thyroglobulin, hormone synthesis and thyroid disease. Eur J Endocrinol 132:603–604

    Article  CAS  PubMed  Google Scholar 

  35. Dunn JT, Dunn AD (2001) Update on intrathyroidal iodine metabolism. Thyroid 11:407–414

    Article  CAS  PubMed  Google Scholar 

  36. Isaia F, Aragoni MC, Arca M, Demartin F, Devillanova FA, Floris G, Garau A, Hursthouse MB, Lippolis V, Medda R, Oppo F, Pira M, Verani G (2008) Interaction of methimazole with I2: X-ray crystal structure of the charge transfer complex methimazole-I2 implications for the mechanism of action of methimazole-based antithyroid drugs. J Med Chem 51:4050–4053

    Article  CAS  PubMed  Google Scholar 

  37. Shin MS, Ko IG, Kim SE, Kim BK, Kim TS, Lee SH, Hwang DS, Kim CJ, Park JK, Lim BV (2013) Treadmill exercise ameliorates symptoms of methimazole-induced hypothyroidism through enhancing neurogenesis and suppressing apoptosis in the hippocampus of rat pups. Int J Dev Neurosci 31:214–223

    Article  CAS  PubMed  Google Scholar 

  38. Manzano J, Cuadrado M, Morte B, Bernal J (2007) Influence of thyroid hormone and thyroid hormone recptors in the generation of cerebellar gamma-aminobutyric acid-ergic interneurons from precursor cells. Endocrinology 148(12):5746–5751

    Article  CAS  PubMed  Google Scholar 

  39. Chantoux F, Francon J (2002) Thyroid hormone regulates the expression of NeuroD/BHF1 during the development of rat cerebellum. Mol Cell Endocrinol 194(1–2):157–163

    Article  CAS  PubMed  Google Scholar 

  40. Pop VJ, Brouwers EP, Vader HL, Vulsma T, van Baar AL, Vijlder JJ (2003) Maternal hypothyroxinaemia during early pregnancy and subsequent child development: a 3 year follow-up study. Clin Endocrinol 59:282–288

    Article  Google Scholar 

  41. Axelstad M, Hansen PR, Boberg J, Bonnichsen M, Nellemann C, Lund SP, Hougaard KS, Hass U (2008) Developmental neurotoxicity of propylthiouracil (PTU) in rats: relationship between transient hypothyroxinemia during development and long-lasting behavioural and functional changes. Toxicol Appl Pharmacol 232(1):1–13

    CAS  PubMed  Google Scholar 

  42. Farwell AP, Dubord-Tomasetti SA, Pietrzykowski AZ, Stachelek SJ, Leonard JL (2005) Regulation of cerebellar neuronal migration and neurite outgrowth by thyroxine and 3,3′,5′-triiodothyronine. Brain Res Dev Brain Res 154(1):121–135

    Article  CAS  PubMed  Google Scholar 

  43. Galliano E, Gao Z, Schonewille M, Todorov B, Simons E, Pop AS, D’Angelo E, van den Maagdenberg AM, Hoebeek FE, De Zeeuw CI (2013) Silencing the majority of cerebellar granule cells uncovers their essential role in motor learning and consolidation. Plant Cell Rep 3(4):1239–1251

    Article  CAS  Google Scholar 

  44. Jiao J, Nakajima A, Janssen WG, Bindokas VP, Xiong X, Morrison JH, Brorson JR, Tang YP (2008) Expression of NR2B in cerebellar granule cells specifically facilitates effect of motor training on motor learning. PLoS One 3(2):e1684

    Article  PubMed Central  PubMed  Google Scholar 

  45. Kim JC, Cook MN, Carey MR, Shen C, Regehr WG, Dymecki SM (2009) Linking genetically defined neurons to behavior through a broadly applicable silencing allele. Neuron 63(3):305–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Seja P, Schonewille M, Spitzmaul G, Badura A, Klein I, Rudhard Y, Wisden W, Hübner CA, De Zeeuw CI, Jentsch TJ (2012) Raising cytosolic Cl- in cerebellar granule cells affects their excitability and vestibule-ocular learning. EMBO J 31(5):1217–1230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Desouza LA, Sathanoori M, Kapoor R, Rajadhyaksha N, Gonzalez LE, Kottmann AH, Tole S, Vaidya VA (2011) Thyroid hormone regulates the expression of the sonic hedgehog signaling pathway in the embryonic and adult mammalian brain. Endocrinology 152(5):1989–2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Knoepfler PS, Cheng PF, Eisenman RN (2002) N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev 16:2699–2712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kenney AM, Rowitch DH (2000) Sonic hedgehog promotes G (1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol 20:9055–9067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Pogoriler J, Millen K, Utset M, Du W (2006) Loss of cyclin D1 impairs cerebellar development and suppresses medulloblastoma formation. Development 133:3929–3937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Huard JM, Forster CC, Carter ML, Sicinski P, Ross ME (1999) Cerebellar histogenesis is disturbed in mice lacking cyclin D2. Development 126:1927–1935

    CAS  PubMed  Google Scholar 

  52. Ciemerych MA, Kenney AM, Sicinska E, Kalaszczynska I, Bronson RT, Rowitch DH, Gardner H, Sicinski P (2002) Development of mice expressing a single D-type cyclin. Genes Dev 16:3277–3289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Yang Y, Sun F, Zhang C, Wang H, Wu G, Wu Z (2013) Hypoxia promotes cell proliferation by modulating E2F1 in chicken pulmonary arterial smooth muscle cells. J Anim Sci Biotechnol 4(1):28

    Article  PubMed Central  PubMed  Google Scholar 

  54. Swarnalatha M, Singh AK, Kumar V (2013) Promoter occupancy of MLL1 histone methyltransferase seems to specify the proliferative and apoptotic functions of E2F1 in a tumour microenvironment. J Cell Sci 126: 4636–4646

    Google Scholar 

  55. Bhatia B, Hsieh M, Kenney AM, Nahlé Z (2011) Mitogenic sonic hedgehog signaling drives E2F1-dependent lipogenesis in progenitor cells and medulloblastoma. Oncogene 30(4):410–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant number 30800896, 81102126) and the Program for Liaoning Excellent Talents in University (grant number LJQ2012070).

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiping Teng or Jie Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wang, Y., Dong, J. et al. Developmental Hypothyroxinemia and Hypothyroidism Reduce Proliferation of Cerebellar Granule Neuron Precursors in Rat Offspring by Downregulation of the Sonic Hedgehog Signaling Pathway. Mol Neurobiol 49, 1143–1152 (2014). https://doi.org/10.1007/s12035-013-8587-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8587-3

Keywords

Navigation