Skip to main content
Log in

The Ca2+-dependent Activator Protein for Secretion CAPS: Do I Dock or do I Prime?

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The “Ca2+-dependent activator protein for secretion” (CAPS) is a protein which reconstitutes regulated secretion in permeabilized neuroendocrine cells. It is generally accepted that CAPS plays an important role in the release of the contents of dense core vesicles in the nervous system as well as in a variety of other secretory tissues. At which step in the exocytotic process CAPS functions as well as its role in the fusion of synaptic vesicles is still under dispute. A recent growth spurt in the CAPS field has been fueled by genetic approaches in Caenorhabditis elegans and Drosophila as well as the application of knockout and knockdown approaches in mouse cells and in cell lines, respectively. We have attempted to review the body of work that established CAPS as an important regulator of secretion and to describe new information that has furthered our understanding of how CAPS may function. We discuss the conclusions, point out areas where controversy remains, and suggest directions for future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Walent JH, Porter BW, Martin TF (1992) A novel 145 kd brain cytosolic protein reconstitutes ca(2+)-regulated secretion in permeable neuroendocrine cells. Cell 70:765–775

    Article  PubMed  CAS  Google Scholar 

  2. Hay JC, Martin TF (1992) Resolution of regulated secretion into sequential MgATP-dependent and calcium-dependent stages mediated by distinct cytosolic proteins. J Cell Biol 119:139–151

    Article  PubMed  CAS  Google Scholar 

  3. Martin TF, Walent JH (1989) A new method for cell permeabilization reveals a cytosolic protein requirement for Ca2+-activated secretion in GH3 pituitary cells. J Biol Chem 264:10299–10308

    PubMed  CAS  Google Scholar 

  4. Nishizaki T, Walent JH, Kowalchyk JA, Martin TF (1992) A key role for a 145-kDa cytosolic protein in the stimulation of ca(2+)-dependent secretion by protein kinase C. J Biol Chem 267:23972–23981

    PubMed  CAS  Google Scholar 

  5. Ann K, Kowalchyk JA, Loyet KM, Martin TF (1997) Novel Ca2+-binding protein (CAPS) related to UNC-31 required for Ca2+-activated exocytosis. J Biol Chem 272:19637–19640

    Article  PubMed  CAS  Google Scholar 

  6. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  Google Scholar 

  7. Avery L, Bargmann CI, Horvitz HR (1993) The Caenorhabditis elegans unc-31 gene affects multiple nervous system-controlled functions. Genetics 134:455–464

    PubMed  CAS  Google Scholar 

  8. Speidel D, Varoqueaux F, Enk C, Nojiri M, Grishanin RN, Martin TF, Hofmann K, Brose N, Reim K (2003) A family of Ca2+-dependent activator proteins for secretion: comparative analysis of structure, expression, localization, and function. J Biol Chem 278:52802–52809

    Article  PubMed  CAS  Google Scholar 

  9. Sadakata T, Washida M, Furuichi T (2007) Alternative splicing variations in mouse CAPS2: differential expression and functional properties of splicing variants. BMC Neurosci 8:25

    Article  PubMed  CAS  Google Scholar 

  10. Sadakata T, Washida M, Morita N, Furuichi T (2007) Tissue distribution of Ca2+-dependent activator protein for secretion family members CAPS1 and CAPS2 in mice. J Histochem Cytochem 55:301–311

    Article  PubMed  CAS  Google Scholar 

  11. Sadakata T, Washida M, Iwayama Y, Shoji S, Sato Y, Ohkura T, Katoh-Semba R, Nakajima M, Sekine Y, Tanaka M, Nakamura K, Iwata Y, Tsuchiya KJ, Mori N, Detera-Wadleigh SD, Ichikawa H, Itohara S, Yoshikawa T, Furuichi T (2007) Autistic-like phenotypes in Cadps2-knockout mice and aberrant CADPS2 splicing in autistic patients. J Clin Invest 117:931–943

    Article  PubMed  CAS  Google Scholar 

  12. Grishanin RN, Klenchin VA, Loyet KM, Kowalchyk JA, Ann K, Martin TF (2002) Membrane association domains in Ca2+-dependent activator protein for secretion mediate plasma membrane and dense-core vesicle binding required for Ca2+-dependent exocytosis. J Biol Chem 277:22025–22034

    Article  PubMed  CAS  Google Scholar 

  13. Rizo J, Sudhof TC (1998) C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem 273:15879–15882

    Article  PubMed  CAS  Google Scholar 

  14. Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9:99–111

    Article  PubMed  CAS  Google Scholar 

  15. Koch H, Hofmann K, Brose N (2000) Definition of Munc13-homology-domains and characterization of a novel ubiquitously expressed Munc13 isoform. Biochem J 349:247–253

    Article  PubMed  CAS  Google Scholar 

  16. Betz A, Okamoto M, Benseler F, Brose N (1997) Direct interaction of the rat unc-13 homologue Munc13-1 with the N terminus of syntaxin. J Biol Chem 272:2520–2526

    Article  PubMed  CAS  Google Scholar 

  17. Basu J, Shen N, Dulubova I, Lu J, Guan R, Guryev O, Grishin NV, Rosenmund C, Rizo J (2005) A minimal domain responsible for Munc13 activity. Nat Struct Mol Biol 12:1017–1018

    PubMed  CAS  Google Scholar 

  18. Madison JM, Nurrish S, Kaplan JM (2005) UNC-13 interaction with syntaxin is required for synaptic transmission. Curr Biol 15:2236–2242

    Article  PubMed  CAS  Google Scholar 

  19. Stevens DR, Wu ZX, Matti U, Junge HJ, Schirra C, Becherer U, Wojcik SM, Brose N, Rettig J (2005) Identification of the minimal protein domain required for priming activity of Munc13-1. Curr Biol 15:2243–2248

    Article  PubMed  CAS  Google Scholar 

  20. Richmond JE, Weimer RM, Jorgensen EM (2001) An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412:338–341

    Article  PubMed  CAS  Google Scholar 

  21. Speese S, Petrie M, Schuske K, Ailion M, Ann K, Iwasaki K, Jorgensen EM, Martin TF (2007) UNC-31 (CAPS) is required for dense-core vesicle but not synaptic vesicle exocytosis in Caenorhabditis elegans. J Neurosci 27:6150–6162

    Article  PubMed  CAS  Google Scholar 

  22. Loyet KM, Kowalchyk JA, Chaudhary A, Chen J, Prestwich GD, Martin TF (1998) Specific binding of phosphatidylinositol 4,5-bisphosphate to calcium-dependent activator protein for secretion (CAPS), a potential phosphoinositide effector protein for regulated exocytosis. J Biol Chem 273:8337–8343

    Article  PubMed  CAS  Google Scholar 

  23. Grishanin RN, Kowalchyk JA, Klenchin VA, Ann K, Earles CA, Chapman ER, Gerona RR, Martin TF (2004) CAPS acts at a perfusion step in dense-core vesicle exocytosis as a PIP2 binding protein. Neuron 43:551–562

    Article  PubMed  CAS  Google Scholar 

  24. James DJ, Khodthong C, Kowalchyk JA, Martin TF (2008) Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion. J Cell Biol 182:355–366

    Article  PubMed  CAS  Google Scholar 

  25. Aoyagi K, Sugaya T, Umeda M, Yamamoto S, Terakawa S, Takahashi M (2005) The activation of exocytotic sites by the formation of phosphatidylinositol 4,5-bisphosphate microdomains at syntaxin clusters. J Biol Chem 280:17346–17352

    Article  PubMed  CAS  Google Scholar 

  26. Milosevic I, Sorensen JB, Lang T, Krauss M, Nagy G, Haucke V, Jahn R, Neher E (2005) Plasmalemmal phosphatidylinositol-4,5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells. J Neurosci 25:2557–2565

    Article  PubMed  CAS  Google Scholar 

  27. Tandon A, Bannykh S, Kowalchyk JA, Banerjee A, Martin TF, Balch WE (1998) Differential regulation of exocytosis by calcium and CAPS in semi-intact synaptosomes. Neuron 21:147–154

    Article  PubMed  CAS  Google Scholar 

  28. Berwin B, Floor E, Martin TF (1998) CAPS (mammalian UNC-31) protein localizes to membranes involved in dense-core vesicle exocytosis. Neuron 21:137–145

    Article  PubMed  CAS  Google Scholar 

  29. Rupnik M, Kreft M, Sikdar SK, Grilc S, Romih R, Zupancic G, Martin TF, Zorec R (2000) Rapid regulated dense-core vesicle exocytosis requires the CAPS protein. Proc Natl Acad Sci U S A 97:5627–5632

    Article  PubMed  CAS  Google Scholar 

  30. Elhamdani A, Martin TF, Kowalchyk JA, Artalejo CR (1999) Ca(2+)-dependent activator protein for secretion is critical for the fusion of dense-core vesicles with the membrane in calf adrenal chromaffin cells. J Neurosci 19:7375–7383

    PubMed  CAS  Google Scholar 

  31. Rettig J, Neher E (2002) Emerging roles of presynaptic proteins in Ca++-triggered exocytosis. Science 298:781–785

    Article  PubMed  CAS  Google Scholar 

  32. Sorensen JB (2004) Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles. Pflugers Arch 448:347–362

    Article  PubMed  CAS  Google Scholar 

  33. Toonen RF, Kochubey O, de Wit H, Gulyas-Kovacs A, Konijnenburg B, Sorensen JB, Klingauf J, Verhage M (2006) Dissecting docking and tethering of secretory vesicles at the target membrane. EMBO J 25:3725–3737

    Article  PubMed  CAS  Google Scholar 

  34. Rizo J, Rosenmund C (2008) Synaptic vesicle fusion. Nat Struct Mol Biol 15:665–674

    Article  CAS  Google Scholar 

  35. Ashery U, Varoqueaux F, Voets T, Betz A, Thakur P, Koch H, Neher E, Brose N, Rettig J (2000) Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells. EMBO J 19:3586–3596

    Article  PubMed  CAS  Google Scholar 

  36. Speidel D, Bruederle CE, Enk C, Voets T, Varoqueaux F, Reim K, Becherer U, Fornai F, Ruggieri S, Holighaus Y, Weihe E, Bruns D, Brose N, Rettig J (2005) CAPS1 regulates catecholamine loading of large dense-core vesicles. Neuron 46:75–88

    Article  PubMed  CAS  Google Scholar 

  37. Fujita Y, Xu A, Xie L, Arunachalam L, Chou TC, Jiang T, Chiew SK, Kourtesis J, Wang L, Gaisano HY, Sugita S (2007) Ca2+-dependent activator protein for secretion 1 is critical for constitutive and regulated exocytosis but not for loading of transmitters into dense core vesicles. J Biol Chem 282:21392–21403

    Article  PubMed  CAS  Google Scholar 

  38. Liu Y, Schirra C, Stevens DR, Matti U, Speidel D, Hof D, Bruns D, Brose N, Rettig J (2008) CAPS facilitates filling of the rapidly releasable pool of large dense-core vesicles. J Neurosci 28:5594–5601

    Article  PubMed  CAS  Google Scholar 

  39. Brunk I, Blex C, Speidel D, Brose N, Ahnert-Hilger G (2009) Ca2+-dependent activator proteins of secretion promote vesicular monoamine uptake. J Biol Chem 284:1050–1056

    Article  PubMed  CAS  Google Scholar 

  40. Miller KG, Alfonso A, Nguyen M, Crowell JA, Johnson CD, Rand JB (1996) A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proc Natl Acad Sci U S A 93:12593–12598

    Article  PubMed  CAS  Google Scholar 

  41. Charlie NK, Schade MA, Thomure AM, Miller KG (2006) Presynaptic UNC-31 (CAPS) is required to activate the G alpha(s) pathway of the Caenorhabditis elegans synaptic signaling network. Genetics 172:943–961

    Article  PubMed  CAS  Google Scholar 

  42. Zhou KM, Dong YM, Ge Q, Zhu D, Zhou W, Lin XG, Liang T, Wu ZX, Xu T (2007) PKA activation bypasses the requirement for UNC-31 in the docking of dense core vesicles from C. elegans neurons. Neuron 56:657–669

    Article  PubMed  CAS  Google Scholar 

  43. Rhee JS, Betz A, Pyott S, Reim K, Varoqueaux F, Augustin I, Hesse D, Sudhof TC, Takahashi M, Rosenmund C, Brose N (2002) Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 108:121–133

    Article  PubMed  CAS  Google Scholar 

  44. Hammarlund M, Watanabe S, Schuske K, Jorgensen EM (2008) CAPS and syntaxin dock dense core vesicles to the plasma membrane in neurons. J Cell Biol 180:483–491

    Article  PubMed  CAS  Google Scholar 

  45. Renden R, Berwin B, Davis W, Ann K, Chin CT, Kreber R, Ganetzky B, Martin TF, Broadie K (2001) Drosophila CAPS is an essential gene that regulates dense-core vesicle release and synaptic vesicle fusion. Neuron 31:421–437

    Article  PubMed  CAS  Google Scholar 

  46. Aravamudan B, Fergestad T, Davis WS, Rodesch CK, Broadie K (1999) Drosophila UNC-13 is essential for synaptic transmission. Nat Neurosci 2:965–971

    Article  PubMed  CAS  Google Scholar 

  47. Sadakata T, Itakura M, Kozaki S, Sekine Y, Takahashi M, Furuichi T (2006) Differential distributions of the Ca2+-dependent activator protein for secretion family proteins (CAPS2 and CAPS1) in the mouse brain. J Comp Neurol 495:735–753

    Article  PubMed  CAS  Google Scholar 

  48. Sadakata T, Mizoguchi A, Sato Y, Katoh-Semba R, Fukuda M, Mikoshiba K, Furuichi T (2004) The secretory granule-associated protein CAPS2 regulates neurotrophin release and cell survival. J Neurosci 24:43–52

    Article  PubMed  CAS  Google Scholar 

  49. Jones KR, Farinas I, Backus C, Reichardt LF (1994) Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76:989–999

    Article  PubMed  CAS  Google Scholar 

  50. Farinas I, Jones KR, Backus C, Wang XY, Reichardt LF (1994) Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature 369:658–661

    Article  PubMed  CAS  Google Scholar 

  51. Schwartz PM, Borghesani PR, Levy RL, Pomeroy SL, Segal RA (1997) Abnormal cerebellar development and foliation in BDNF−/− mice reveals a role for neurotrophins in CNS patterning. Neuron 19:269–281

    Article  PubMed  CAS  Google Scholar 

  52. Bates B, Rios M, Trumpp A, Chen C, Fan G, Bishop JM, Jaenisch R (1999) Neurotrophin-3 is required for proper cerebellar development. Nat Neurosci 2:115–117

    Article  PubMed  CAS  Google Scholar 

  53. Jockusch WJ, Speidel D, Sigler A, Sorensen JB, Varoqueaux F, Rhee JS, Brose N (2007) CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins. Cell 131:796–808

    Article  PubMed  CAS  Google Scholar 

  54. Bekkers JM, Stevens CF (1991) Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proc Natl Acad Sci U S A 88:7834–7838

    Article  PubMed  CAS  Google Scholar 

  55. Dulubova I, Sugita S, Hill S, Hosaka M, Fernandez I, Sudhof TC, Rizo J (1999) A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J 18:4372–4382

    Article  PubMed  CAS  Google Scholar 

  56. Richmond JE, Davis WS, Jorgensen EM (1999) UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat Neurosci 2:959–964

    Article  PubMed  CAS  Google Scholar 

  57. Tokumaru H, Augustine GJ (1999) UNC-13 and neurotransmitter release. Nat Neurosci 2:929–930

    Article  PubMed  CAS  Google Scholar 

  58. Sheu L, Pasyk EA, Ji J, Huang X, Gao X, Varoqueaux F, Brose N, Gaisano HY (2003) Regulation of insulin exocytosis by Munc13-1. J Biol Chem 278:27556–27563

    Article  PubMed  CAS  Google Scholar 

  59. Verhage M, Sorensen JB (2008) Vesicle docking in regulated exocytosis. Traffic 9:1414–1424

    Article  PubMed  CAS  Google Scholar 

  60. Shirakawa R, Higashi T, Tabuchi A, Yoshioka A, Nishioka H, Fukuda M, Kita T, Horiuchi H (2004) Munc13-4 is a GTP-Rab27-binding protein regulating dense core granule secretion in platelets. J Biol Chem 279:10730–10737

    Article  PubMed  CAS  Google Scholar 

  61. Neeft M, Wieffer M, de Jong AS, Negroiu G, Metz CH, van Loon A, Griffith J, Krijgsveld J, Wulffraat N, Koch H, Heck AJ, Brose N, Kleijmeer M, van der Sluijs P (2005) Munc13-4 is an effector of rab27a and controls secretion of lysosomes in hematopoietic cells. Mol Biol Cell 16:731–741

    Article  PubMed  CAS  Google Scholar 

  62. Rybkin II, Kim MS, Bezprozvannaya S, Qi X, Richardson JA, Plato CF, Hill JA, Bassel-Duby R, Olson EN (2007) Regulation of atrial natriuretic peptide secretion by a novel ras-like protein. J Cell Biol 179:527–537

    Article  PubMed  CAS  Google Scholar 

  63. Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208

    PubMed  CAS  Google Scholar 

  64. Betz A, Thakur P, Junge HJ, Ashery U, Rhee JS, Scheuss V, Rosenmund C, Rettig J, Brose N (2001) Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 30:183–196

    Article  PubMed  CAS  Google Scholar 

  65. Andrews-Zwilling YS, Kawabe H, Reim K, Varoqueaux F, Brose N (2006) Binding to Rab3A-interacting molecule RIM regulates the presynaptic recruitment of Munc13-1 and ubMunc13-2. J Biol Chem 281:19720–19731

    Article  PubMed  CAS  Google Scholar 

  66. Tsuboi T (2008) Molecular mechanism of docking of dense-core vesicles to the plasma membrane in neuroendocrine cells. Med Mol Morphol 41:68–75

    Article  PubMed  CAS  Google Scholar 

  67. Sieburth D, Madison JM, Kaplan JM (2007) PKC-1 regulates secretion of neuropeptides. Nat Neurosci 10:49–57

    Article  PubMed  CAS  Google Scholar 

  68. Nofal S, Becherer U, Hof D, Matti U, Rettig J (2007) Primed vesicles can be distinguished from docked vesicles by analyzing their mobility. J Neurosci 27:1386–1395

    Article  PubMed  CAS  Google Scholar 

  69. Toonen RF, Verhage M (2007) Munc18-1 in secretion: lonely munc joins SNARE team and takes control. Trends Neurosci 30:564–572

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank all members of our and collaborating labs for their contributions. Work in our lab is supported by grants from the Deutsche Forschungsgemeinschaft and the European Union and by local funding (HOMFOR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Rettig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, D.R., Rettig, J. The Ca2+-dependent Activator Protein for Secretion CAPS: Do I Dock or do I Prime?. Mol Neurobiol 39, 62–72 (2009). https://doi.org/10.1007/s12035-009-8052-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-009-8052-5

Keywords

Navigation