Skip to main content
Log in

Modulation of Ligand-gated Ion Channels by Antidepressants and Antipsychotics

Molecular Neurobiology Aims and scope Submit manuscript

Abstract

It is generally accepted that antidepressants and antipsychotics mediate their therapeutic effects via specific interaction with processes related to synaptic neurotransmission in the central nervous system. Besides their well-known classical mechanisms of action, antidepressants and antipsychotics show widely unknown effects, which might also contribute to the pharmacological profile of these agents. There is growing evidence that an interaction of these drugs with allosteric modulatory sites of ligand-gated ion channels (LGICs) might represent a yet unknown principle of action. Such interactions of psychopharmacological drugs with LGICs might play an important role both for the therapeutic efficacy and the side effect profile of these agents. In this review, we focus on the direct interaction of antidepressants and antipsychotics with LGICs, which may provide a basis for the development of novel psychopharmacological drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Pacher P, Kohegyi E, Kecskemeti V, Furst S (2001) Current trends in the development of new antidepressants. Curr Med Chem 8:89–100

    PubMed  CAS  Google Scholar 

  2. Blakely RD (2001) Physiological genomics of antidepressant targets: keeping the periphery in mind. J Neurosci 21:8319–8323

    PubMed  CAS  Google Scholar 

  3. Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54:597–606

    PubMed  CAS  Google Scholar 

  4. Holsboer F, Barden N (1996) Antidepressants and hypothalamic-pituitary-adrenocortical regulation. Endocr Rev 17:187–205

    PubMed  CAS  Google Scholar 

  5. Webster EL, Lewis DB, Torpy DJ, Zachman EK, Rice KC, Chrousos GP (1996) In vivo and in vitro characterization of antalarmin, a nonpeptide corticotropin-releasing hormone (CRH) receptor antagonist: suppression of pituitary ACTH release and peripheral inflammation. Endocrinology 137:5747–5750

    PubMed  CAS  Google Scholar 

  6. Frazer A (2001) Serotonergic and noradrenergic reuptake inhibitors: prediction of clinical effects from in vitro potencies. J Clin Psychiatry 62(Suppl 12):16–23

    PubMed  CAS  Google Scholar 

  7. Parsons CG, Danysz W, Zieglgansberger W (2005) Excitatory amino acid neurotransmission. Handb Exp Pharmacol 249–303

  8. Paul IA, Skolnick P (2003) Glutamate and depression: clinical and preclinical studies. Ann N Y Acad Sci 1003:250–272

    PubMed  CAS  Google Scholar 

  9. Palucha A, Pilc A (2005) The involvement of glutamate in the pathophysiology of depression. Drug News Perspect 18:262–268

    PubMed  CAS  Google Scholar 

  10. Maj J (1991) Antidepressants given repeatedly: pharmacological evaluation of their action. Pol J Pharmacol Pharm 43:241–254

    PubMed  CAS  Google Scholar 

  11. Moryl E, Danysz W, Quack G (1993) Potential antidepressive properties of amantadine, memantine and bifemelane. Pharmacol Toxicol 72:394–397

    PubMed  CAS  Google Scholar 

  12. Papp M, Moryl E (1994) Antidepressant activity of non-competitive and competitive NMDA receptor antagonists in a chronic mild stress model of depression. Eur J Pharmacol 263:1–7

    PubMed  CAS  Google Scholar 

  13. Przegalinski E, Tatarczynska E, Deren-Wesolek A, Chojnacka-Wojcik E (1997) Antidepressant-like effects of a partial agonist at strychnine-insensitive glycine receptors and a competitive NMDA receptor antagonist. Neuropharmacology 36:31–37

    PubMed  CAS  Google Scholar 

  14. Krebs M, Leopold K, Hinzpeter A, Schaefer M (2006) Neuroprotective agents in schizophrenia and affective disorders. Expert Opin Pharmacother 7:837–848

    PubMed  CAS  Google Scholar 

  15. Huang NY, Layear RT, Skolnick P (1997) Is an adaptation of NMDA receptors an obligatory step in antidepressant action? In: Skolnick P (ed) Antidepressants: new pharmacologic strategies. Humana Press, Totowa, NJ, pp 125–143

    Google Scholar 

  16. Paul IA, Layer RT, Skolnick P, Nowak G (1993) Adaptation of the NMDA receptor in rat cortex following chronic electroconvulsive shock or imipramine. Eur J Pharmacol 247:305–311

    PubMed  CAS  Google Scholar 

  17. Paul IA, Nowak G, Layer RT, Popik P, Skolnick P (1994) Adaptation of the N-methyl-d-aspartate receptor complex following chronic antidepressant treatments. J Pharmacol Exp Ther 269:95–102

    PubMed  CAS  Google Scholar 

  18. Kole MH, Swan L, Fuchs E (2002) The antidepressant tianeptine persistently modulates glutamate receptor currents of the hippocampal CA3 commissural associational synapse in chronically stressed rats. Eur J Neurosci 16:807–816

    PubMed  Google Scholar 

  19. Watanabe M, Inoue Y, Sakimura K, Mishina M (1993) Distinct distributions of five N-methyl-d-aspartate receptor channel subunit mRNAs in the forebrain. J Comp Neurol 338:377–390

    PubMed  CAS  Google Scholar 

  20. Sernagor E, Kuhn D, Vyklicky L Jr, Mayer ML (1989) Open channel block of NMDA receptor responses evoked by tricyclic antidepressants. Neuron 2:1221–1227

    PubMed  CAS  Google Scholar 

  21. Ueta K, Suzuki T, Uchida I, Mashimo T (2004) In vitro inhibition of recombinant ligand-gated ion channels by high concentrations of milnacipran. Psychopharmacology (Berl) 175:241–246

    CAS  Google Scholar 

  22. Puozzo C, Leonard BE (1996) Pharmacokinetics of milnacipran in comparison with other antidepressants. Int Clin Psychopharmacol 11(Suppl 4):15–27

    Article  PubMed  Google Scholar 

  23. Rudolph U, Mohler H (2004) Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu Rev Pharmacol Toxicol 44:475–498

    PubMed  CAS  Google Scholar 

  24. McKernan RM, Whiting PJ (1996) Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci 19:139–143

    PubMed  CAS  Google Scholar 

  25. Nutt DJ, Malizia AL (2001) New insights into the role of the GABA(A)-benzodiazepine receptor in psychiatric disorder. Br J Psychiatry 179:390–396

    PubMed  CAS  Google Scholar 

  26. Bandelow B, Zohar J, Hollander E, Kasper S, Moller HJ (2002) World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the pharmacological treatment of anxiety, obsessive–compulsive and posttraumatic stress disorders. World J Biol Psychiatry 3:171–199

    PubMed  Google Scholar 

  27. Griffin LD, Mellon SH (1999) Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. Proc Natl Acad Sci U S A 96:13512–13517

    PubMed  CAS  Google Scholar 

  28. Uzunov DP, Cooper TB, Costa E, Guidotti A (1996) Fluoxetine-elicited changes in brain neurosteroid content measured by negative ion mass fragmentography. Proc Natl Acad Sci U S A 93:12599–12604

    PubMed  CAS  Google Scholar 

  29. Rupprecht R, Holsboer F (1999) Neuroactive steroids: mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci 22:410–416

    PubMed  CAS  Google Scholar 

  30. Romeo E, Strohle A, Spalletta G, di Michele F, Hermann B, Holsboer F, Pasini A, Rupprecht R (1998) Effects of antidepressant treatment on neuroactive steroids in major depression. Am J Psychiatry 155:910–913

    PubMed  CAS  Google Scholar 

  31. Robinson RT, Drafts BC, Fisher JL (2003) Fluoxetine increases GABA(A) receptor activity through a novel modulatory site. J Pharmacol Exp Ther 304:978–984

    PubMed  CAS  Google Scholar 

  32. Baker GB, Wong JT, Yeung JM, Coutts RT (1991) Effects of the antidepressant phenelzine on brain levels of gamma-aminobutyric acid (GABA). J Affect Disord 21:207–211

    PubMed  CAS  Google Scholar 

  33. Korf J, Venema K (1983) Desmethylimipramine enhances the release of endogenous GABA and other neurotransmitter amino acids from the rat thalamus. J Neurochem 40:946–950

    PubMed  CAS  Google Scholar 

  34. Tanay VA, Glencorse TA, Greenshaw AJ, Baker GB, Bateson AN (1996) Chronic administration of antipanic drugs alters rat brainstem GABAA receptor subunit mRNA levels. Neuropharmacology 35:1475–1482

    PubMed  CAS  Google Scholar 

  35. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function (review, 650 refs). Neuropharmacology 38:1083–1152

    PubMed  CAS  Google Scholar 

  36. van Hooft JA, Vijverberg HP (2000) 5-HT(3) receptors and neurotransmitter release in the CNS: a nerve ending story? Trends Neurosci 23:605–610

    PubMed  Google Scholar 

  37. Ronde P, Nichols RA (1998) High calcium permeability of serotonin 5-HT3 receptors on presynaptic nerve terminals from rat striatum. J Neurochem 70:1094–1103

    Article  PubMed  CAS  Google Scholar 

  38. Sugita S, Shen KZ, North RA (1992) 5-hydroxytryptamine is a fast excitatory transmitter at 5-HT3 receptors in rat amygdala. Neuron 8:199–203

    PubMed  CAS  Google Scholar 

  39. Roerig B, Nelson DA, Katz LC (1997) Fast synaptic signaling by nicotinic acetylcholine and serotonin 5-HT3 receptors in developing visual cortex. J Neurosci 17:8353–8362

    PubMed  CAS  Google Scholar 

  40. MacDermott AB, Role LW, Siegelbaum SA (1999) Presynaptic ionotropic receptors and the control of transmitter release. Annu Rev Neurosci 22:443–485

    PubMed  CAS  Google Scholar 

  41. Costall B, Naylor R (2000) Neuropharmacology of 5-HT3 receptor ligands. In: Baumgarten HG, Gothert M (eds) Serotoninergic Neurons and 5-HT Receptors in the CNS. Springer, Berlin Heidelberg New York, pp 409–438

    Google Scholar 

  42. Eisensamer B, Rammes G, Gimpl G, Shapa M, Ferrari U, Hapfelmeier G, Bondy B, Parsons C, Gilling K, Zieglgänsberger W, Holsboer F, Rupprecht R (2003) Antidepressant are functional antagonists at the serotonin type 3 (5-HT3) receptor. Mol Psychiatry 8:994–1007

    PubMed  CAS  Google Scholar 

  43. Tecott LH, Maricq AV, Julius D (1993) Nervous system distribution of the serotonin 5-HT3 receptor mRNA. Proc Natl Acad Sci U S A 90:1430–1434

    PubMed  CAS  Google Scholar 

  44. Kilpatrick GJ, Jones BJ, Tyers MB (1987) Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 330:746–748

    PubMed  CAS  Google Scholar 

  45. Nakagawa Y, Ishima T, Takashima T (1998) The 5-HT3 receptor agonist attenuates the action of antidepressants in the forced swim test in rats. Brain Res 786:189–193

    PubMed  CAS  Google Scholar 

  46. Rodgers RJ, Cole JC, Tredwell JM (1995) Profile of action of 5-HT3 receptor antagonists, ondansetron and WAY 100289, in the elevated plus-maze test of anxiety of mice. Psychopharmacology (Berl) 117:306–312

    CAS  Google Scholar 

  47. Fan P (1994) Facilitation of 5-hydroxytryptamine3 receptor desensitization by fluoxetine. Neuroscience 62:515–522

    PubMed  CAS  Google Scholar 

  48. Breitinger HG, Geetha N, Hess GP (2001) Inhibition of the serotonin 5-HT3 receptor by nicotine, cocaine, and fluoxetine investigated by rapid chemical kinetic techniques. Biochemistry 40:8419–8429

    PubMed  CAS  Google Scholar 

  49. Barnes EM Jr (1996) Use-dependent regulation of GABAA receptors. Int Rev Neurobiol 39:53–76

    Article  PubMed  CAS  Google Scholar 

  50. Calkin PA, Barnes EM Jr (1994) gamma-Aminobutyric acid-A (GABAA) agonists down-regulate GABAA/benzodiazepine receptor polypeptides from the surface of chick cortical neurons. J Biol Chem 269:1548–1553

    PubMed  CAS  Google Scholar 

  51. Miranda JD, Barnes EM Jr (1997) Repression of gamma-aminobutyric acid type A receptor alpha1 polypeptide biosynthesis requires chronic agonist exposure. J Biol Chem 272:16288–16294

    PubMed  CAS  Google Scholar 

  52. Eisensamer B, Uhr M, Meyr S, Gimpl G, Deiml T, Rammes G, Lambert JJ, Zieglgansberger W, Holsboer F, Rupprecht R (2005) Antidepressants and antipsychotic drugs colocalize with 5-HT3 receptors in raft-like domains. J Neurosci 25:10198–10206

    PubMed  CAS  Google Scholar 

  53. Guirland C, Suzuki S, Kojima M, Lu B, Zheng JQ (2004) Lipid rafts mediate chemotropic guidance of nerve growth cones. Neuron 42:51–62

    PubMed  CAS  Google Scholar 

  54. Hering H, Lin CC, Sheng M (2003) Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci 23:3262–3271

    PubMed  CAS  Google Scholar 

  55. Ledesma MD, Simons K, Dotti CG (1998) Neuronal polarity: essential role of protein–lipid complexes in axonal sorting. Proc Natl Acad Sci U S A 95:3966–3971

    PubMed  CAS  Google Scholar 

  56. Lang T, Bruns D, Wenzel D, Riedel D, Holroyd P, Thiele C, Jahn R (2001) SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J 20:2202–2213

    PubMed  CAS  Google Scholar 

  57. Chamberlain LH, Burgoyne RD, Gould GW (2001) SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis. Proc Natl Acad Sci U S A 98:5619–5624

    PubMed  CAS  Google Scholar 

  58. Suzuki T, Ito J, Takagi H, Saitoh F, Nawa H, Shimizu H (2001) Biochemical evidence for localization of AMPA-type glutamate receptor subunits in the dendritic raft. Brain Res Mol Brain Res 89:20–28

    PubMed  CAS  Google Scholar 

  59. Eckert GP, Igbavboa U, Muller WE, Wood WG (2003) Lipid rafts of purified mouse brain synaptosomes prepared with or without detergent reveal different lipid and protein domains. Brain Res 962:144–150

    PubMed  CAS  Google Scholar 

  60. Wetzel CH, Hermann B, Behl C, Pestel E, Rammes G, Zieglgansberger W, Holsboer F, Rupprecht R (1998) Functional antagonism of gonadal steroids at the 5-Hydroxytryptamine type 3 receptor. Mol Endocrinol 12:1441–1451

    PubMed  CAS  Google Scholar 

  61. Galzi JL, Changeux JP (1995) Neuronal nicotinic receptors: molecular organization and regulations. Neuropharmacology 34:563–582

    PubMed  CAS  Google Scholar 

  62. Lindstrom J (1996) Neuronal nicotinic acetylcholine receptors. Ion Channels 4:377–450

    PubMed  CAS  Google Scholar 

  63. Lukas RJ, Bencherif M (1992) Heterogeneity and regulation of nicotinic acetylcholine receptors. Int Rev Neurobiol 34:25–131

    PubMed  CAS  Google Scholar 

  64. Lukas RJ, Changeux JP, Le Novere N, Albuquerque EX, Balfour DJ, Berg DK, Bertrand D, Chiappinelli VA, Clarke PB, Collins AC, Dani JA, Grady SR, Kellar KJ, Lindstrom JM, Marks MJ, Quik M, Taylor PW, Wonnacott S (1999) International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol Rev 51:397–401

    PubMed  CAS  Google Scholar 

  65. Millar NS (2003) Assembly and subunit diversity of nicotinic acetylcholine receptors (review, 80 refs). Biochem Soc Trans 31:869–874

    PubMed  CAS  Google Scholar 

  66. Caldarone BJ, Harrist A, Cleary MA, Beech RD, King SL, Picciotto MR (2004) High-affinity nicotinic acetylcholine receptors are required for antidepressant effects of amitriptyline on behavior and hippocampal cell proliferation. Biol Psychiatry 56:657–664

    PubMed  CAS  Google Scholar 

  67. Shytle RD, Silver AA, Lukas RJ, Newman MB, Sheehan DV, Sanberg PR (2002) Nicotinic acetylcholine receptors as targets for antidepressants. Mol Psychiatry 7:525–535

    PubMed  CAS  Google Scholar 

  68. Arita M, Wada A, Takara H, Izumi F (1987) Inhibition of 22Na influx by tricyclic and tetracyclic antidepressants and binding of [3H]imipramine in bovine adrenal medullary cells. J Pharmacol Exp Ther 243:342–348

    PubMed  CAS  Google Scholar 

  69. Izaguirre V, Fernandez-Fernandez JM, Cena V, Gonzalez-Garcia C (1997) Tricyclic antidepressants block cholinergic nicotinic receptors and ATP secretion in bovine chromaffin cells. FEBS Lett 418:39–42

    PubMed  CAS  Google Scholar 

  70. Shaker N, Eldefrawi AT, Miller ER, Eldefrawi ME (1981) Interaction of tricyclic antidepressants with the ionic channel of the acetylcholine receptor of Torpedo electric organ. Mol Pharmacol 20:511–518

    PubMed  CAS  Google Scholar 

  71. Park TJ, Shin SY, Suh BC, Suh EK, Lee IS, Kim YS, Kim KT (1998) Differential inhibition of catecholamine secretion by amitriptyline through blockage of nicotinic receptors, sodium channels, and calcium channels in bovine adrenal chromaffin cells. Synapse 29:248–256

    PubMed  CAS  Google Scholar 

  72. Schofield GG, Witkop B, Warnick JE, Albuquerque EX (1981) Differentiation of the open and closed states of the ionic channels of nicotinic acetylcholine receptors by tricyclic antidepressants. Proc Natl Acad Sci U S A 78:5240–5244

    PubMed  CAS  Google Scholar 

  73. Garcia-Colunga J, Awad JN, Miledi R (1997) Blockage of muscle and neuronal nicotinic acetylcholine receptors by fluoxetine (Prozac). Proc Natl Acad Sci USA 94:2041–2044

    PubMed  CAS  Google Scholar 

  74. Hennings EC, Kiss JP, Vizi ES (1997) Nicotinic acetylcholine receptor antagonist effect of fluoxetine in rat hippocampal slices. Brain Res 759:292–294

    PubMed  CAS  Google Scholar 

  75. Fryer JD, Lukas RJ (1999) Antidepressants noncompetitively inhibit nicotinic acetylcholine receptor function. J Neurochem 72:1117–1124

    PubMed  CAS  Google Scholar 

  76. Hennings EC, Kiss JP, De Oliveira K, Toth PT, Vizi ES (1999) Nicotinic acetylcholine receptor antagonistic activity of monoamine uptake blockers in rat hippocampal slices. J Neurochem 73:1043–1050

    PubMed  CAS  Google Scholar 

  77. Miller DK, Wong EH, Chesnut MD, Dwoskin LP (2002) Reboxetine: functional inhibition of monoamine transporters and nicotinic acetylcholine receptors. J Pharmacol Exp Ther 302:687–695

    PubMed  CAS  Google Scholar 

  78. Lopez-Valdes HE, Garcia-Colunga J (2001) Antagonism of nicotinic acetylcholine receptors by inhibitors of monoamine uptake. Mol Psychiatry 6:511–519

    PubMed  CAS  Google Scholar 

  79. Gumilar F, Arias HR, Spitzmaul G, Bouzat C (2003) Molecular mechanisms of inhibition of nicotinic acetylcholine receptors by tricyclic antidepressants. Neuropharmacology 45:964–976

    PubMed  CAS  Google Scholar 

  80. Slemmer JE, Martin BR, Damaj MI (2000) Bupropion is a nicotinic antagonist. J Pharmacol Exp Ther 295:321–327

    PubMed  CAS  Google Scholar 

  81. Fryer JD, Lukas RJ (1999) Noncompetitive functional inhibition at diverse, human nicotinic acetylcholine receptor subtypes by bupropion, phencyclidine, and ibogaine. J Pharmacol Exp Ther 288:88–92

    PubMed  CAS  Google Scholar 

  82. Martin BR, Onaivi ES, Martin TJ (1989) What is the nature of mecamylamine’s antagonism of the central effects of nicotine? Biochem Pharmacol 38:3391–3397

    PubMed  CAS  Google Scholar 

  83. Rose JE, Behm FM, Westman EC, Levin ED, Stein RM, Ripka GV (1994) Mecamylamine combined with nicotine skin patch facilitates smoking cessation beyond nicotine patch treatment alone. Clin Pharmacol Ther 56:86–99

    Article  PubMed  CAS  Google Scholar 

  84. Hurt RD, Sachs DP, Glover ED, Offord KP, Johnston JA, Dale LC, Khayrallah MA, Schroeder DR, Glover PN, Sullivan CR, Croghan IT, Sullivan PM (1997) A comparison of sustained-release bupropion and placebo for smoking cessation. N Engl J Med 337:1195–1202

    PubMed  CAS  Google Scholar 

  85. Carlsson ML (1995) The selective 5-HT2A receptor antagonist MDL 100,907 counteracts the psychomotor stimulation ensuing manipulations with monoaminergic, glutamatergic or muscarinic neurotransmission in the mouse—implications for psychosis. J Neural Transm Gen Sect 100:225–237

    PubMed  CAS  Google Scholar 

  86. Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M, van Dyck CH, Charney DS, Innis RB, Laruelle M (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 155:761–767

    PubMed  CAS  Google Scholar 

  87. Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pickar D (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci U S A 94:2569–2574

    PubMed  CAS  Google Scholar 

  88. Hietala J, Syvalahti E, Vuorio K, Nagren K, Lehikoinen P, Ruotsalainen U, Rakkolainen V, Lehtinen V, Wegelius U (1994) Striatal D2 dopamine receptor characteristics in neuroleptic-naive schizophrenic patients studied with positron emission tomography. Arch Gen Psychiatry 51:116–123

    PubMed  CAS  Google Scholar 

  89. Laruelle M, Iyer RN, al-Tikriti MS, Zea-Ponce Y, Malison R, Zoghbi SS, Baldwin RM, Kung HF, Charney DS, Hoffer PB, Innis RB, Bradberry CW (1997) Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates. Synapse 25:1–14

    PubMed  CAS  Google Scholar 

  90. Kinon BJ, Lieberman JA (1996) Mechanisms of action of atypical antipsychotic drugs: a critical analysis. Psychopharmacology (Berl) 124:2–34

    CAS  Google Scholar 

  91. Newcomer JW, Faustman WO, Zipursky RB, Csernansky JG (1992) Zacopride in schizophrenia: a single-blind serotonin type 3 antagonist trial. Arch Gen Psychiatry 49:751–752

    PubMed  CAS  Google Scholar 

  92. Goff DC, Coyle JT (2001) The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 158:1367–1377

    PubMed  CAS  Google Scholar 

  93. Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmuller B (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 20:379–382

    PubMed  CAS  Google Scholar 

  94. Parsons CG, Danysz W, Quack G (1998) Glutamate in CNS disorders as a target for drug development: an update. Drug News Perspect 11:523–569

    PubMed  CAS  Google Scholar 

  95. Breese GR, Knapp DJ, Moy SS (2002) Integrative role for serotonergic and glutamatergic receptor mechanisms in the action of NMDA antagonists: potential relationships to antipsychotic drug actions on NMDA antagonist responsiveness. Neurosci Biobehav Rev 26:441–455

    PubMed  CAS  Google Scholar 

  96. Javitt DC (2004) Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 9:984–997, 979

    PubMed  CAS  Google Scholar 

  97. Rosse RB, Theut SK, Banay-Schwartz M, Leighton M, Scarcella E, Cohen CG, Deutsch SI (1989) Glycine adjuvant therapy to conventional neuroleptic treatment in schizophrenia: an open-label, pilot study. Clin Neuropharmacol 12:416–424

    PubMed  CAS  Google Scholar 

  98. Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Horowitz A, Kelly D (1996) Double-blind, placebo-controlled, crossover trial of glycine adjuvant therapy for treatment-resistant schizophrenia. Br J Psychiatry 169:610–617

    PubMed  CAS  Google Scholar 

  99. Giardino L, Bortolotti F, Orazzo C, Pozza M, Monteleone P, Calza L, Maj M (1997) Effect of chronic clozapine administration on [3H]MK801-binding sites in the rat brain: a side-preference action in cortical areas. Brain Res 762:216–218

    PubMed  CAS  Google Scholar 

  100. McCoy L, Cox C, Richfield EK (1998) Antipsychotic drug regulation of AMPA receptor affinity states and GluR1, GluR2 splice variant expression. Synapse 28:195–207

    PubMed  CAS  Google Scholar 

  101. Meshul CK, Bunker GL, Mason JN, Allen C, Janowsky A (1996) Effects of subchronic clozapine and haloperidol on striatal glutamatergic synapses. J Neurochem 67:1965–1973

    Article  PubMed  CAS  Google Scholar 

  102. Spurney CF, Baca SM, Murray AM, Jaskiw GE, Kleinman JE, Hyde TM (1999) Differential effects of haloperidol and clozapine on ionotropic glutamate receptors in rats. Synapse 34:266–276

    PubMed  CAS  Google Scholar 

  103. Tarazi FI, Shirakawa O, Tamminga CA (1993) Low dose raclopride spares the extrapyramidal system in rat brain from metabolic effects. Eur J Pharmacol 232:71–77

    PubMed  CAS  Google Scholar 

  104. Healy DJ, Meador-Woodruff JH (1997) Clozapine and haloperidol differentially affect AMPA and kainate receptor subunit mRNA levels in rat cortex and striatum. Brain Res Mol Brain Res 47:331–338

    PubMed  CAS  Google Scholar 

  105. Riva MA, Tascedda F, Lovati E, Racagni G (1997) Regulation of NMDA receptor subunit messenger RNA levels in the rat brain following acute and chronic exposure to antipsychotic drugs. Brain Res Mol Brain Res 50:136–142

    PubMed  CAS  Google Scholar 

  106. Tascedda F, Blom JM, Brunello N, Zolin K, Gennarelli M, Colzi A, Bravi D, Carra S, Racagni G, Riva MA (2001) Modulation of glutamate receptors in response to the novel antipsychotic olanzapine in rats. Biol Psychiatry 50:117–122

    PubMed  CAS  Google Scholar 

  107. Tarazi FI, Baldessarini RJ, Kula NS, Zhang K (2003) Long-term effects of olanzapine, risperidone, and quetiapine on ionotropic glutamate receptor types: implications for antipsychotic drug treatment. J Pharmacol Exp Ther 306:1145–1151

    PubMed  CAS  Google Scholar 

  108. Jardemark KE, Liang X, Arvanov V, Wang RY (2000) Subchronic treatment with either clozapine, olanzapine or haloperidol produces a hyposensitive response of the rat cortical cells to N-methyl-d-aspartate. Neuroscience 100:1–9

    PubMed  CAS  Google Scholar 

  109. Evans RH, Francis AA, Watkins JC (1977) Differential antagonism by chlorpromazine and diazepam of frog motoneurone depolarization induced by glutamate-related amino acids. Eur J Pharmacol 44:325–330

    PubMed  CAS  Google Scholar 

  110. Jardemark KE, Ai J, Ninan I, Wang RY (2001) Biphasic modulation of NMDA-induced responses in pyramidal cells of the medial prefrontal cortex by Y-931, a potential atypical antipsychotic drug. Synapse 41:294–300

    PubMed  CAS  Google Scholar 

  111. Arvanov VL, Liang X, Schwartz J, Grossman S, Wang RY (1997) Clozapine and haloperidol modulate N-methyl-d-aspartate- and non-N-methyl-d-aspartate receptor-mediated neurotransmission in rat prefrontal cortical neurons in vitro. J Pharmacol Exp Ther 283:226–234

    PubMed  CAS  Google Scholar 

  112. Wang RY, Liang X, Jardemark KE, Arvanov V (2000) Facilitation of NMDA transmission by olanzapine. In: Tran PV et al (ed) Olanzapine (Zyprexa)—a novel antipsychotic. Williams & Wilkins, Baltimore, pp 114–131

    Google Scholar 

  113. Wittmann M, Marino MJ, Henze DA, Seabrook GR, Conn PJ (2005) Clozapine potentiation of N-methyl-d-aspartate receptor currents in the nucleus accumbens: role of NR2B and protein kinase A/Src kinases. J Pharmacol Exp Ther 313:594–603

    PubMed  CAS  Google Scholar 

  114. Arvanov VL, Wang RY (1997) NMDA-induced response in pyramidal neurons of the rat medial prefrontal cortex slices consists of NMDA and non-NMDA components. Brain Res 768:361–364

    PubMed  CAS  Google Scholar 

  115. Arvanov VL, Wang RY (1998) M100907, a selective 5-HT2A receptor antagonist and a potential antipsychotic drug, facilitates N-methyl-d-aspartate-receptor mediated neurotransmission in the rat medial prefrontal cortical neurons in vitro. Neuropsychopharmacology 18:197–209

    PubMed  CAS  Google Scholar 

  116. Wang X, Gu Z, Zhong P, Chen G, Feng J, Yan Z (2006) Aberrant regulation of NMDA receptors by dopamine D4 signaling in rats after phencyclidine exposure. Mol Cell Neurosci 31:15–25

    PubMed  Google Scholar 

  117. Wang X, Zhong P, Gu Z, Yan Z (2003) Regulation of NMDA receptors by dopamine D4 signaling in prefrontal cortex. J Neurosci 23:9852–9861

    PubMed  CAS  Google Scholar 

  118. Ninan I, Jardemark KE, Liang X, Wang RY (2003) Calcium/calmodulin-dependent kinase II is involved in the facilitating effect of clozapine on NMDA- and electrically evoked responses in the medial prefrontal cortical pyramidal cells. Synapse 47:285–294

    PubMed  CAS  Google Scholar 

  119. Ilyin VI, Whittemore ER, Guastella J, Weber E, Woodward RM (1996) Subtype-selective inhibition of N-methyl-d-aspartate receptors by haloperidol. Mol Pharmacol 50:1541–1550

    PubMed  CAS  Google Scholar 

  120. Levine JB, Martin G, Wilson A, Treistman SN (2003) Clozapine inhibits isolated N-methyl-d-aspartate receptors expressed in Xenopus oocytes in a subunit specific manner. Neurosci Lett 346:125–128

    PubMed  CAS  Google Scholar 

  121. Wassef A, Baker J, Kochan LD (2003) GABA and schizophrenia: a review of basic science and clinical studies. J Clin Psychopharmacol 23:601–640

    PubMed  CAS  Google Scholar 

  122. Benes FM, Vincent SL, Marie A, Khan Y (1996) Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience 75:1021–1031

    PubMed  CAS  Google Scholar 

  123. Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzunov DP, Smalheiser NR, Davis JM, Pandey GN, Pappas GD, Tueting P, Sharma RP, Costa E (1998) A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci U S A 95:15718–15723

    PubMed  CAS  Google Scholar 

  124. Benes FM, Vincent SL, Alsterberg G, Bird ED, SanGiovanni JP (1992) Increased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenics. J Neurosci 12:924–929

    PubMed  CAS  Google Scholar 

  125. Cotter D, Landau S, Beasley C, Stevenson R, Chana G, MacMillan L, Everall I (2002) The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia. Biol Psychiatry 51:377–386

    PubMed  CAS  Google Scholar 

  126. Woo TU, Walsh JP, Benes FM (2004) Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-d-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch Gen Psychiatry 61:649–657

    PubMed  CAS  Google Scholar 

  127. Benes FM, Wickramasinghe R, Vincent SL, Khan Y, Todtenkopf M (1997) Uncoupling of GABA(A) and benzodiazepine receptor binding activity in the hippocampal formation of schizophrenic brain. Brain Res 755:121–129

    PubMed  CAS  Google Scholar 

  128. Dean B, Hussain T, Hayes W, Scarr E, Kitsoulis S, Hill C, Opeskin K, Copolov DL (1999) Changes in serotonin2A and GABA(A) receptors in schizophrenia: studies on the human dorsolateral prefrontal cortex. J Neurochem 72:1593–1599

    PubMed  CAS  Google Scholar 

  129. Squires RF, Saederup E (1991) A review of evidence for GABAergic predominance/glutamatergic deficit as a common etiological factor in both schizophrenia and affective psychoses: more support for a continuum hypothesis of “functional” psychosis. Neurochem Res 16:1099–1111

    PubMed  CAS  Google Scholar 

  130. Zink M, Schmitt A, May B, Muller B, Demirakca T, Braus DF, Henn FA (2004) Differential effects of long-term treatment with clozapine or haloperidol on GABAA receptor binding and GAD67 expression. Schizophr Res 66:151–157

    PubMed  Google Scholar 

  131. Zorumski CF, Yang J (1988) Non-competitive inhibition of GABA currents by phenothiazines in cultured chick spinal cord and rat hippocampal neurons. Neurosci Lett 92:86–91

    PubMed  CAS  Google Scholar 

  132. Agopyan N, Krnjevic K (1993) Effects of trifluoperazine on synaptically evoked potentials and membrane properties of CA1 pyramidal neurons of rat hippocampus in situ and in vitro. Synapse 13:10–19

    PubMed  CAS  Google Scholar 

  133. Mozrzymas JW, Barberis A, Michalak K, Cherubini E (1999) Chlorpromazine inhibits miniature GABAergic currents by reducing the binding and by increasing the unbinding rate of GABAA receptors. J Neurosci 19:2474–2488

    PubMed  CAS  Google Scholar 

  134. May PR, Van Putten T (1978) Plasma levels of chlorpromazine in schizophrenia; a critical review of the literature. Arch Gen Psychiatry 35:1081–1087

    PubMed  CAS  Google Scholar 

  135. Ikemoto S, Kohl RR, McBride WJ (1997) GABA(A) receptor blockade in the anterior ventral tegmental area increases extracellular levels of dopamine in the nucleus accumbens of rats. J Neurochem 69:137–143

    Article  PubMed  CAS  Google Scholar 

  136. Johnson SW, North RA (1992) Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J Physiol 450:455–468

    PubMed  CAS  Google Scholar 

  137. Steffensen SC, Svingos AL, Pickel VM, Henriksen SJ (1998) Electrophysiological characterization of GABAergic neurons in the ventral tegmental area. J Neurosci 18:8003–8015

    PubMed  CAS  Google Scholar 

  138. Wong G, Kuoppamaki M, Hietala J, Luddens H, Syvalahti E, Korpi ER (1996) Effects of clozapine metabolites and chronic clozapine treatment on rat brain GABAA receptors. Eur J Pharmacol 314:319–323

    PubMed  CAS  Google Scholar 

  139. Squires RF, Saederup E (1997) Clozapine and some other antipsychotic drugs may preferentially block the same subset of GABA(A) receptors. Neurochem Res 22:151–162

    PubMed  CAS  Google Scholar 

  140. Squires RF, Saederup E (1998) Clozapine and several other antipsychotic/antidepressant drugs preferentially block the same ‘core’ fraction of GABA(A) receptors. Neurochem Res 23:1283–1290

    PubMed  CAS  Google Scholar 

  141. Korpi ER, Wong G, Luddens H (1995) Subtype specificity of gamma-aminobutyric acid type A receptor antagonism by clozapine. Naunyn Schmiedebergs Arch Pharmacol 352:365–373

    PubMed  CAS  Google Scholar 

  142. Michael FJ, Trudeau LE (2000) Clozapine inhibits synaptic transmission at GABAergic synapses established by ventral tegmental area neurones in culture. Neuropharmacology 39, 1536–1543

    Google Scholar 

  143. Silverstone PH, Greenshaw AJ (1996) 5-HT3 receptor antagonists. Expert Opin Ther Pat 6:471–481

    Article  CAS  Google Scholar 

  144. Reynolds GP (1992) Developments in the drug treatment of schizophrenia. Trends Pharmacol Sci 13:116–121 [erratum in Trends Pharmacol Sci 1992 Apr;13(4):140; Trends Pharmacol Sci 1992 May;13(5):184]

    PubMed  CAS  Google Scholar 

  145. De Deurwaerdere P, Stinus L, Spampinato U (1998) Opposite change of in vivo dopamine release in the rat nucleus accumbens and striatum that follows electrical stimulation of dorsal raphe nucleus: role of 5-HT3 receptors. J Neurosci 18:6528–6538

    PubMed  Google Scholar 

  146. Blandina P, Goldfarb J, Green JP (1988) Activation of a 5-HT3 receptor releases dopamine from rat striatal slice. Eur J Pharmacol 155:349–350

    PubMed  CAS  Google Scholar 

  147. Sorensen SM, Humphreys TM, Palfreyman MG (1989) Effect of acute and chronic MDL 73,147EF, a 5-HT3 receptor antagonist, on A9 and A10 dopamine neurons. Eur J Pharmacol 163:115–118

    PubMed  CAS  Google Scholar 

  148. Costall B, Domeney AM, Naylor RJ, Tyers MB (1987) Effects of the 5-HT3 receptor antagonist, GR38032F, on raised dopaminergic activity in the mesolimbic system of the rat and marmoset brain. Br J Pharmacol 92:881–894

    PubMed  CAS  Google Scholar 

  149. Wang RY, Ashby CRJ, Zhang JY (1996) Modulation of the A10 dopamine system: electrophysiological studies of the role of 5-HT3-like receptors. Behav Brain Res 73:7–10

    PubMed  CAS  Google Scholar 

  150. Apud JA (1993) The 5-HT3 receptor in mammalian brain: a new target for the development of psychotropic drugs? (review, 112 refs). Neuropsychopharmacology 8:117–130

    PubMed  CAS  Google Scholar 

  151. Watling KJ, Beer MS, Stanton JA, Newberry NR (1990) Interaction of the atypical neuroleptic clozapine with 5-HT3 receptors in the cerebral cortex and superior cervical ganglion of the rat. Eur J Pharmacol 182:465–472

    PubMed  CAS  Google Scholar 

  152. Hermann B, Wetzel CH, Pestel E, Zieglgansberger W, Holsboer F, Rupprecht R (1996) Functional antagonistic properties of clozapine at the 5-HT3 receptor. Biochem Biophys Res Commun 225:957–960

    PubMed  CAS  Google Scholar 

  153. Rammes G, Eisensamer B, Ferrari U, Shapa M, Gimpl G, Gilling K, Parsons C, Riering K, Hapfelmeier G, Bondy B, Zieglgansberger W, Holsboer F, Rupprecht R (2004) Antipsychotic drugs antagonize human serotonin type 3 receptor currents in a noncompetitive manner. Mol Psychiatry 9:846–858

    PubMed  CAS  Google Scholar 

  154. Greenshaw AJ (1993) Behavioural pharmacology of 5-HT3 receptor antagonists: a critical update on therapeutic potential. Trends Pharmacol Sci 14:265–270

    PubMed  CAS  Google Scholar 

  155. Adler LE, Olincy A, Waldo M, Harris JG, Griffith J, Stevens K, Flach K, Nagamoto H, Bickford P, Leonard S, Freedman R (1998) Schizophrenia, sensory gating, and nicotinic receptors. Schizophr Bull 24:189–202

    PubMed  CAS  Google Scholar 

  156. Leonard S, Adler LE, Benhammou K, Berger R, Breese CR, Drebing C, Gault J, Lee MJ, Logel J, Olincy A, Ross RG, Stevens K, Sullivan B, Vianzon R, Virnich DE, Waldo M, Walton K, Freedman R (2001) Smoking and mental illness. Pharmacol Biochem Behav 70:561–570

    PubMed  CAS  Google Scholar 

  157. Thaker GK (2002) Current progress in schizophrenia research: sensory gating deficit in schizophrenia: is the nicotinic alpha-7 receptor implicated? J Nerv Ment Dis 190:550–551

    PubMed  Google Scholar 

  158. Sershen H, Balla A, Lajtha A, Vizi ES (1997) Characterization of nicotinic receptors involved in the release of noradrenaline from the hippocampus. Neuroscience 77:121–130

    PubMed  CAS  Google Scholar 

  159. Wonnacott S (1997) Presynaptic nicotinic ACh receptors. Trends Neurosci 20:92–98

    PubMed  CAS  Google Scholar 

  160. Benoit P, Changeux JP (1993) Voltage dependencies of the effects of chlorpromazine on the nicotinic receptor channel from mouse muscle cell line So18. Neurosci Lett 160:81–84

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Rammes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rammes, G., Rupprecht, R. Modulation of Ligand-gated Ion Channels by Antidepressants and Antipsychotics. Mol Neurobiol 35, 160–174 (2007). https://doi.org/10.1007/s12035-007-0006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-007-0006-1

Keywords

Navigation