Skip to main content
Log in

Angle- and polarization-dependent optical switching in porous silicon-based coupled photonic microcavities

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Porous silicon (pSi)-based coupled photonic microcavities (MCs) are highly desirable for tunable optical transmission. The coupled microcavities (CMCs) are designed by stacking three cavity layers with a reflection of above 60–70% at λc = 685 nm. The position of the cavity in transmission mode is found to shift towards shorter wavelength regions with an increase in the angle of incidence for s-, p- and un-polarizations, which might be due to a decrease in effective thickness of pSi layer subjected to oblique incident angles. The line-width and intensity of transmission modes are found to be highly polarization (i.e., s-, p- and un-polarizations) dependent at a higher angle of incidence. Further, ~100 nm shift in the transmission mode towards lower wavelength has been achieved by doping of Ag nanoparticles into MC. This is a feasible approach to tune the optical cavity mode to desired wavelengths for applications in optical switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Vendamani V S, Khan S A, Dhanunjaya M, Pathak A P and Nageswara Rao S V S 2017 Micropor. Mesopor. Mat. 246 81

    Article  CAS  Google Scholar 

  2. Vendamani V S, Pathak A P and Nageswara Rao S V S 2015 Opt. Mater. 48 66

    Article  CAS  Google Scholar 

  3. Vendamani V S, Dang Z Y, Ramana P, Pathak A P, Ravi Kanth Kumar V V, Breese M B H et al 2015 Nucl. Inst. Meth. B 358 105

    Article  CAS  Google Scholar 

  4. Vendamani V S, Hamad S, Saikiran V, Pathak A P, Venugopal Rao S, Ravi Kanth Kumar V V et al 2015 J. Mat. Sci. 50 1666

    Article  CAS  Google Scholar 

  5. Vendamani V S, Nageswara Rao S V S and Pathak A P 2014 Appl. Surf. Sci. 320 334

    Article  CAS  Google Scholar 

  6. Hamad S, Podagatlapalli G K, Vendamani V S, Nageswara Rao S V S, Pathak A P, Tewari S P et al 2014 J. Phys. Chem. C 118 7139

    Article  CAS  Google Scholar 

  7. Vendamani V S, Pathak A P and Nageswara Rao S V S 2013 Nucl. Inst. Meth. B 315 188

    Article  CAS  Google Scholar 

  8. Lehmann V 2002 Electrochemistry of silicon: instrumentation, science, materials, and applications (Munchen, Germany: Wiley-VCH Verlag GmbH) 286

    Book  Google Scholar 

  9. Lenshin A S, Seredin P V, Kashkarov V M and Minakov D A 2017 Mater. Sci. Semicond. Process. 64 71

    Article  CAS  Google Scholar 

  10. Sawada S, Hamada N and Ookubo N 1994 Phys. Rev. B 48 5236

    Article  Google Scholar 

  11. Azimi S, Song J, Dang Z Y and Breese M B H 2013 J. Appl. Phys. 114 053517

    Article  Google Scholar 

  12. Wolkin M V, Jorne J, Fauchet P M, Allan G and Delerue C 1998 Phys. Rev. Lett. 82 197

    Article  Google Scholar 

  13. Kumar P International Scholarly Research Notices 2011 https://doi.org/10.5402/2011/163168

  14. Mangaiyarkarasi D, Breese M B H, Ow Y S and Vijila C 2006 Appl. Phys. Lett. 89 021910

    Article  Google Scholar 

  15. Pavesi L 1997 Rivista Del Nuovo Cimento 20 1

    Article  CAS  Google Scholar 

  16. Azimi S, Breese M B H, Dang Z Y, Yan Y, Ow Y S and Bettiol A A 2012 J. Micromech. Microeng. 22 015015

    Article  Google Scholar 

  17. Teo E J, Breese M B H, Bettiol A A, Mangaiyarkarasi D, Champeaux F J T, Watt F et al 2006 Adv. Mater. 18 51

    Article  CAS  Google Scholar 

  18. Zhanga H, Jia Z, Lv X and Liu Y 2014 Optik 125 557

    Article  Google Scholar 

  19. Do T C, Bui H, Nguyen T V, Nguyen T A, Nguyen T H and Pham V H 2011 Adv. Nat. Sci.: Nanosci. Nanotechnol. 2 035001

    Google Scholar 

  20. Mescheder U, Khazi I, Kovacs A and Ivanov A 2014 Nanoscale Res. Lett. 9 427

    Article  Google Scholar 

  21. Wachter G, Kuhn S, Minniberger S, Salter C, Asenbaum P, Millen J et al 2019 Light: Sci. Appl. 8 37

    Article  Google Scholar 

  22. Dwivedi V K, Pradeesh K and Vijaya Prakash G 2011 Appl. Surf. Sci. 257 3468

    Article  CAS  Google Scholar 

  23. Pellandini P, Stanley R P, Houdre R, Oesterle U, Ilegems M and Weisbuch C 1997 Appl. Phys. Lett. 71 864

    Article  CAS  Google Scholar 

  24. Zhang H, Jia Z, Lv X and Liu Y 2014 Optik 125 557

    Article  CAS  Google Scholar 

  25. Mulloni V and Pavesi L 2000 Appl. Phys. Lett. 76 2523

    Article  CAS  Google Scholar 

  26. Volk J, Balazs J, Toth A L and Barsony I 2004 Sensor Actuat. B 100 163

    Article  CAS  Google Scholar 

  27. Armitage A, Skolnick M S, Kavokin A V, Whittaker D M, Astratov V N and Gehring G A 1998 Phys. Rev. B 58 15367

    Article  CAS  Google Scholar 

  28. Gusev D G, Martemyanov M G, Soboleva I V, Dolgova T V, Fedyanin A A and Aktsipetrov O A 2004 JETP Lett. 80 633

    Article  CAS  Google Scholar 

  29. Agranovich V M, Litinskaia M and Lidzey D G 2003 Phys. Rev. 67 085311

    Article  Google Scholar 

  30. Altug H and Vuckovic J 2005 Opt. Lett. 30 982

    Article  Google Scholar 

  31. Shelykh I A, Kavokin A V, Rubo Y G, Liew T C H and Malpuech G 2010 Semicond. Sci. Technol. 25 013001

    Article  Google Scholar 

  32. Panzarini G, Andreani L C, Armitage A, Baxter D, Skolnick M S, Astratov V N et al 1999 Phys. Rev. B 59 5082

    Article  CAS  Google Scholar 

  33. Han D, Meng Z, Wu D, Zhang C and Zhu H 2011 Nanoscale Res. Lett. 6 457

    Article  Google Scholar 

  34. Baxter D, Skolnick M S, Armitage A, Astratov V N, Whittaker D M, Fisher T A et al 1996 Phys. Rev. B 56 R10032

    Article  Google Scholar 

Download references

Acknowledgement

MGIT is acknowledged for the instrumental facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yella Pardhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pardhu, Y. Angle- and polarization-dependent optical switching in porous silicon-based coupled photonic microcavities. Bull Mater Sci 44, 239 (2021). https://doi.org/10.1007/s12034-021-02523-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02523-1

Keywords

Navigation