Skip to main content

Advertisement

Log in

Energy-harvesting enhancement in composites of microwave-exfoliated KNN and multiwall carbon nanotubes

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The objective of this research work is to investigate the effect of multiwall carbon nanotube (MWCNT) content (0.3–1.2 wt%) on a potassium sodium niobate (KNN)-based piezoelectric unimorph harvester for enhancing the energy generation capacity. KNN–MWCNT composites were fabricated by using a microwave solid state technique. The energy-harvesting performance of the KNN–MWCNT composite was determined by the base excitation method and sized to resonate between 20 and 100 Hz at 1 \(\hbox {M}\Omega \) load resistance. The energy performance of the KNN composite at percolation threshold (0.6 wt% MWCNT) showed a maximum power generation of \(2.94\, \upmu \hbox {W}\), the power density of 7.15 \(\upmu \hbox {W}\) \(\hbox {m}^{-3}\) and overall efficiency of 83.75% at an input acceleration of 0.5 g and a load resistance of 1 \(\hbox {M}\Omega \). Improvements observed in the power generation by percolation phenomena and ionic flow over the nanotube surface of KNN composites prove to be a boon for low-power sensing devices.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shashank P 2007 J. Electroceram. 19 167

    Article  Google Scholar 

  2. Kim H S, Kim J H and Kim J 2011 Int. J. Precis. Eng. Manuf. 12 1129

    Article  Google Scholar 

  3. Beeby S P, Tudor M J and White N M 2006 Meas. Sci. Technol. 17 175

    Article  Google Scholar 

  4. Park S E and Shrout T R 1997 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44 1140

    Article  Google Scholar 

  5. Dubois M A and Muralt P 1999 Appl. Phys. Lett. 74 3032

    Article  CAS  Google Scholar 

  6. Wang X, Zhou J, Song J, Liu J, Xu N and Wang Z L 2006 Nano Lett. 6 2768

    Article  CAS  Google Scholar 

  7. Giurgiutiu V (ed) 2014 Structural health monitoring with piezoelectric wafer active sensors 2nd edn (Cambridge, USA: Elsevier Academic Press) p 1024

  8. Uchino K 1998 Acta Mater. 46 3745

    Article  CAS  Google Scholar 

  9. Wang Q M, Zhang Q M, Xu B M, Liu R B and Cross L E 1999 J. Appl. Phys. 86 3352

    Article  CAS  Google Scholar 

  10. Chu S Y, Chen T Y, Tsai I T and Water W 2004 Sens. Actuators A Phys. 113 198

    Article  CAS  Google Scholar 

  11. Tang I T, Chen H J, Hwang W C, Wang Y C, Houng M P and Wang Y H 2004 J. Cryst. Growth 262 461

    Article  CAS  Google Scholar 

  12. Koyama D and Nakamura K 2009 Ultrason. Symp. (IUS): IEEE Int. 1973

  13. Sodano H A, Inman D J and Park G 2004 Shock Vib. Dig. 36 197

    Article  Google Scholar 

  14. Swee-Leong K, Mohamad N, Weng Y D F, Kien C S and Fu D C 2011 Int. Conf. Electr. Control Comput. Eng. (INECCE) 12 420

    Google Scholar 

  15. Ng T H and Liao W J 2005 J. Intell. Mater. Syst. Struct. 16 785

    Article  Google Scholar 

  16. Egerton L and Bieling C A 1938 Ceram. Bull. 47 1151

    Google Scholar 

  17. Saito Y, Takao H, Tani T, Nonoyama T, Talkatori K, Homma T et al 2004 Nature 432 84

    Article  CAS  Google Scholar 

  18. Panda P K 2009 J. Mater. Sci. 44 5049

    Article  CAS  Google Scholar 

  19. Lam K H, Lin D M, Ni Y Q and Chan H L W 2009 Struct. Health Monit. 8 283

    Article  Google Scholar 

  20. Guo M, Lam K H, Lin D M, Wang S, Kwok K W, Chan H L W et al 2007 J. Mater. Sci. 43 709

    Article  Google Scholar 

  21. Kawada S, Kimura M, Higuchi Y and Takagi H 2009 Appl. Phys. Express 2 111401

    Article  Google Scholar 

  22. Li E, Sasaki R, Hoshina T, Takeda H and Tsurumi T 2009 Jpn. J. Appl. Phys. 48 09KD11

    Google Scholar 

  23. Zuo R and Ye C 2007 Appl. Phys. Lett. 91 062916

    Article  Google Scholar 

  24. Saito Y and Takao H 2006 Ferroelectrics 338 17

    Article  CAS  Google Scholar 

  25. Ming B Q 2007 J. Appl. Phys. 101 054103

    Article  Google Scholar 

  26. Zuo R and Fu J 2011 J. Am. Ceram. Soc. 94 1467

    Article  CAS  Google Scholar 

  27. Xu W C, Lam K H, Choy S H and Chan H L W 2007 Integr. Ferroelectr. 89 87

    Article  CAS  Google Scholar 

  28. Tanaka D, Tsukada T, Furukawa M, Wada S and Kuroiwa Y 2009 Jpn. J. Appl. Phys. 48 09KD08

    Google Scholar 

  29. Zhang Q 2010 J. Alloys Compd. 490 260

    Article  CAS  Google Scholar 

  30. Wu J, Xiao D, Wang Y, Wu W, Zhang B and Zhu J 2008 J. Phys. D.: Appl. Phys. 41 125405

    Article  Google Scholar 

  31. Prince V, Ram Pratap P, Manmeeta and Dhiraj S 2016 AIP Conf. Proc. 1728 020341

    Article  Google Scholar 

  32. Cristina E C, Padurarju L, Lavinia P C, Lupu N, Lisiecki I, Deluca M et al 2014 J. Appl. Phys. 116 164110

    Article  Google Scholar 

  33. Ray M C and Bart R C 2007 Smart Mater. Struct. 16 1936

    Article  CAS  Google Scholar 

  34. Tian S, Cui F and Wang X 2008 Mater. Lett. 62 3859

    Article  CAS  Google Scholar 

  35. Nadar R N, Munishamaiah K, Suresh A V and Murthy H N 2018 Mater. Sci. Eng. B 231 40

    Article  Google Scholar 

  36. Huang H, Zheng C, Ruan X, Zeng J, Zheng L, Chen W et al 2014 Ferroelectrics 459 1

    Article  CAS  Google Scholar 

  37. Sriramdas R, Ramya C M, Kumar J S, Jain A and Rudra P 2014 J. ISSS 3 18

    Google Scholar 

  38. Shu Y C and Lien I C 2006 J. Micromech. Microeng. 16 2429

    Article  Google Scholar 

  39. Renaud M, Karakaya K, Sterken T, Fiorini P, Hoof C V and Puers R 2008 Sens. Actuators A 380 145

    Google Scholar 

  40. Kanno I, Ichida T, Kotera H, Shibata K, Horikiri F and Mishima T 2011 Proc. Power MEMS 110

  41. Jyothi R, Kumar P P, Nidhi A N, Singh H, Yadav K L and Prakash S 2014 J. Mater. Sci. Technol. 30 459

    Article  Google Scholar 

  42. Hong C H, Kim H P, Choi B Y, Han H S, Son J S, Ahn C W et al 2016 J. Materiomics 2 1

    Article  Google Scholar 

  43. Qing H and Gao L 2004 J. Mater. Chem. 16 2475

    Google Scholar 

  44. Banerjee S, Cook Chennault K A, Du W, Sundar U, Halim H and Tang A 2016 Smart Mater. Struct. 25 115018

    Article  Google Scholar 

  45. Elvin N and Erturk A 2013 in Advances in energy harvesting methods N Elvin and A Erturk (eds) (New York, NY: Springer) p 3445

  46. Her S C and Lai C Y 2013 Materials 6 2274

    Article  CAS  Google Scholar 

  47. Henry C, Fu K and Leang K 2012 IEEE Control Syst. Mag. 32 95

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of R.V.C.E., Bangalore under TEQIP-II, Subcomponent 1.2, Characterization facilities support at CENSE Department under INUP, Material Engineering Department at IISC, Bangalore and technical guidance from Dr Rammohan Sriramdas, CENSE Dept., IISC, Bangalore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Krishna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadar, N.R., Krishna, M. & Suresh, A.V. Energy-harvesting enhancement in composites of microwave-exfoliated KNN and multiwall carbon nanotubes. Bull Mater Sci 42, 253 (2019). https://doi.org/10.1007/s12034-019-1938-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1938-6

Keywords

Navigation