Skip to main content

Advertisement

Log in

Synthesis, characterization and comparison of polythiophene–carbon nanocomposite materials as Pt electrocatalyst supports for fuel cell applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A novel polymer–carbon (PTh–C) nanocomposites containing different percentages of polythiophene (10, 20 and 50% (w/w)) and carbon (Vulcan XC-72) was prepared by a facile solution dispersion method and used to support platinum nanoparticles. The effect of using different percentages of polythiophene in nanocomposites and subsequently prepared electrocatalysts was investigated. The resultant electrocatalysts were extensively characterized by physical (X-ray diffraction (XRD) and transmission electron microscopy (TEM)) and electrochemical (cyclic voltammetry (CV)) techniques. The TEM results showed that the fine Pt nanoparticles prepared by ethylene glycol (EG) method were distributed on the surface of the 50% PTh–C nanocomposites successfully. From the XRD patterns, the average size of dispersed Pt nanoparticles with the face-centered cubic (fcc) structure on 50% PTh–C, 20% PTh–C, 10% PTh–C and carbon were about 4.9, 5.2, 5.4 and 6.1 nm, respectively. The conductivity of PTh–C with different percentages of pure PTh was compared with the conductivity of the corresponding support of pure PTh. It is observed that the conductivity of 50% PTh–C nanocomposites is about 600 times higher than that of pure PTh. Finally, CV measurements of hydrogen and methanol oxidations indicated that Pt/50% PTh–C had a higher electrochemical surface area and higher catalytic activity for methanol oxidation reaction compared to other electrocatalysts. These measurements showed that the Pt/50% PTh–C electrocatalyst by the value of 3.85 had higher \(I_{\mathrm{f}}/I_{\mathrm{b}}\) ratio with respect to Pt/10% PTh–C and Pt/20% PTh–C by the values of 2.66 and 2.0, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Carrette L, Friedrich K A and Stimming U 2000 Chem. Phys. Chem. 1 162

    Article  Google Scholar 

  2. Wang Y, Chen K S, Mishler J, Cho S C and Adroher X C 2011 Appl. Energy 88 981

    Article  Google Scholar 

  3. Ellis M W, Von Spakovsky M R and Nelson D J 2001 Proc. IEEE 89 1808

    Article  Google Scholar 

  4. Chen Z, Xu L, Li W, Waje M and Yan Y 2006 Nanotechnology 17 5254

    Article  Google Scholar 

  5. Smitha B, Sridhar S and Khan A 2005 J. Membr. Sci. 259 10

    Article  Google Scholar 

  6. Prater K B 1996 J. Power Sources 61 105

    Article  Google Scholar 

  7. Wang S, Jiang S P, White T, Guo J and Wang X 2009 J. Phys. Chem. C 113 18935

    Article  Google Scholar 

  8. Shao Y, Zhang S, Wang C, Nie Z, Liu J, Wang Y et al 2010 J. Power Sources 195 4600

    Article  Google Scholar 

  9. Chung C G, Kim L, Sung Y W, Lee J and Chung J S 2009 Int. J. Hydrog. Energy 34 8974

    Article  Google Scholar 

  10. Yaldagard M, Jahanshahi M and Seghatoleslami N 2013 World J. Nano Sci. Eng. 3 121

    Article  Google Scholar 

  11. Sharma S and Pollet B G 2012 J. Power Sources 208 96

    Article  Google Scholar 

  12. Beden B, Léger J-M and Lamy C 1992 in: J O M Bockris, B E Conway and R E White (eds) Modern aspects of electrochemistry (New York: Plenum Press) p 97

  13. Wang Y-J, Wilkinson D P and Zhang J 2011 Chem. Rev. 111 7625

    Article  Google Scholar 

  14. Sharma S and Pollet B G 2012 J. Power Sources 208 96

    Article  Google Scholar 

  15. Wang J, Yin G-P, Zhang J, Wang Z and Gao Y 2007 Electrochim. Acta 52 7042

    Article  Google Scholar 

  16. Adhikari A, Radhakrishnan S and Patil R 2009 Synth. Met. 159 1682

    Article  Google Scholar 

  17. Antolini E 2010 Appl. Catal. B: Environ. 100 413

    Article  Google Scholar 

  18. Unni S M, Dhavale V M, Pillai V K and Kurungot S 2010 J. Phys. Chem. C 114 14654

    Article  Google Scholar 

  19. Vedrine J C, Dufaux M, Naccache C and Imelik B 1978 J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases 74 440

  20. Biloul A, Coowar F, Contamin O, Scarbeck G, Savy M, Van den Ham D et al 1990 J. Electroanal. Chem. Interfac. Electrochem. 289 189

    Article  Google Scholar 

  21. Zhou J, Zhou X, Sun X, Li R, Murphy M, Ding Z et al 2007 Chem. Phys. Lett. 437 229

    Article  Google Scholar 

  22. Dicks A L 2006 J. Power Sources 156 128

    Article  Google Scholar 

  23. Antolini E 2009 Appl. Catal. B: Environ. 88 1

    Article  Google Scholar 

  24. Maillard F, Simonov P A and Savinova E R 2009 in: P Serp and J Figueiredo (eds) Carbon materials for catalysis (New York: John Wiley & Sons, Inc.) chapter 12 p 429

  25. Hezarjaribi M, Jahanshahi M, Rahimpour A and Yaldagard M 2014 Appl. Surf. Sci. 295 144

    Article  Google Scholar 

  26. Wallace G G, Teasdale P R, Spinks G M and Kane-Maguire L A 2008 Conductive electroactive polymers: intelligent polymer systems, third edn (New York: CRC Press)

  27. Antolini E and Gonzalez E 2009 Appl. Catal. A: General 365 1

    Article  Google Scholar 

  28. Roncali J 1992 Chem. Rev. 92 711

    Article  Google Scholar 

  29. Kattimani J, Sankarappa T, Praveenkumar K, Ashwajeet J and Ramanna R 2014 Int. J. Adv. Res. Phys. Sci. 1 17

    Google Scholar 

  30. Lee J M, Lee S J, Jung Y J and Kim J H 2008 Curr. Appl. Phys. 8 659

    Article  Google Scholar 

  31. Sulub R, Martinez-Millan W and Smit M A 2009 Int. J. Electrochem. Sci. 4 1015

    Google Scholar 

  32. Schopf G and Koßmehl G 1997 Adv. Polym. Sci. 129 3

  33. Cao Y, Wang P and Qian R 1985 Die Makromolekulare Chemie 186 1093

    Article  Google Scholar 

  34. Tsakova V 2008 J. Solid State Electrochem. 12 1421

    Article  Google Scholar 

  35. Gomez-Romero P 2001 Adv. Mat. 13 163

    Article  Google Scholar 

  36. Fischer H 2003 Mat. Sci. Eng: C 23 763

    Article  Google Scholar 

  37. Roy S, Christensen P, Hamnett A, Thomas K and Trapp V 1996 J. Electrochem. Soc. 143 3073

    Article  Google Scholar 

  38. Takada T, Nakahara M, Kumagai H and Sanada Y 1996 Carbon 34 1087

    Article  Google Scholar 

  39. Kumar D and Sharma R 1998 Eur. Polym. J. 34 1053

    Article  Google Scholar 

  40. Gangopadhyay R and De A 2000 Chem. Mat. 12 608

    Article  Google Scholar 

  41. Lin R, Cao C, Zhang H, Huang H and Ma J 2012 Int. J. Hydrog. Energy 37 4648

    Article  Google Scholar 

  42. Koponen U, Kumpulainen H, Bergelin M, Keskinen J, Peltonen T, Valkiainen M et al 2003 J. Power Sources 118 325

    Article  Google Scholar 

Download references

Acknowledgements

We wish to express our sincere gratitude to the Nanotechnology Research Institute of Babol University for its scientific and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Yaldagard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 59 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrollahzadeh, M., Jahanshahi, M., Yaldagard, M. et al. Synthesis, characterization and comparison of polythiophene–carbon nanocomposite materials as Pt electrocatalyst supports for fuel cell applications. Bull Mater Sci 41, 85 (2018). https://doi.org/10.1007/s12034-018-1599-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1599-x

Keywords

Navigation