Skip to main content
Log in

WTAP-mediated N6-methyladenine Modification of circEEF2 Promotes Lung Adenocarcinoma Tumorigenesis by Stabilizing CANT1 in an IGF2BP2-dependent Manner

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

N6-methyladenosine (m6A) is a common posttranscriptional RNA modification and plays an important role in cancer biology. Circular RNAs (circRNAs) are also reported to participate in lung adenocarcinoma (LUAD) progression. Here, we aimed to investigate the functions of Wilms tumor 1-associating protein (WTAP) methyltransferase and circEEF2 in LUAD cell tumorigenesis, and probe whether circEEF2 functioned through WTAP-induced m6A modification and its potential mechanisms. Functional analyses were conducted by tube formation, sphere formation, 5-ethynyl-2′-deoxyuridine (EdU), flow cytometry, and transwell assays in vitro as well as tumor formation experiments in mice, respectively. The N6-methyladenine (m6A) modification in circEEF2 mRNA was determined by RNA immunoprecipitation (Me-RIP) assay. The interaction between IGF2BP2 (Insulin Like Growth Factor 2 MRNA-Binding Protein 2) and circEEF2 or Calcium-activated nucleotidase 1 (CANT1) mRNA was confirmed using RIP assay. LUAD tissues and cells showed high circEEF2 expression, and the deficiency of circEEF2 suppressed LUAD cell angiogenesis, stemness, proliferation, migration, and invasion. WTAP induced circEEF2 m6A modification. WTAP silencing repressed the oncogenic phenotypes of LUAD cells via stabilizing circEEF2 in an m6A-dependent manner. IGF2BP2 interacted with circEEF2 and CANT1, and WTAP and circEEF2 could regulate CANT1 expression through IGF2BP2. The inhibition of LUAD cell oncogenic phenotypes caused by circEEF2 deficiency was abolished by CANT1 overexpression. In addition, WTAP silencing impeded LUAD growth via modulating circEEF2 and CANT1 in vivo. WTAP-mediated m6A modification of circEEF2 promotes lung adenocarcinoma growth and tumorigenesis by stabilizing CANT1 through IGF2BP2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The analyzed data sets generated during the present study are available from the corresponding author on reasonable request.

References

  1. Thandra, K. C., Barsouk, A., Saginala, K., Aluru, J. S., & Barsouk, A. (2021). Epidemiology of lung cancer. Contemporary Oncology (Poznan, Poland), 25(1), 45–52.

    CAS  PubMed  Google Scholar 

  2. Shi, J., Hua, X., Zhu, B., Ravichandran, S., Wang, M., Nguyen, C., Brodie, S. A., Palleschi, A., Alloisio, M., Pariscenti, G., et al. (2016). Somatic genomics and clinical features of lung adenocarcinoma: A retrospective study. PLoS Medicine, 13(12), e1002162.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hao, C. C., Xu, C. Y., Zhao, X. Y., Luo, J. N., Wang, G., Zhao, L. H., Ge, X., & Ge, X. F. (2020). Up-regulation of VANGL1 by IGF2BPs and miR-29b-3p attenuates the detrimental effect of irradiation on lung adenocarcinoma. Journal of Experimental & Clinical Cancer Research : CR, 39(1), 256.

    Article  CAS  PubMed Central  Google Scholar 

  4. Liu, C. X., Li, X., Nan, F., Jiang, S., Gao, X., Guo, S. K., Xue, W., Cui, Y., Dong, K., Ding, H., et al. (2019). Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell, 177(4), 865.e821–880.e821.

  5. He, A. T., Liu, J., Li, F., & Yang, B. B. (2021). Targeting circular RNAs as a therapeutic approach: Current strategies and challenges. Signal Transduction and Targeted Therapy, 6(1), 185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, J., Zhao, X., Wang, Y., Ren, F., Sun, D., Yan, Y., Kong, X., Bu, J., Liu, M., & Xu, S. (2020). circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death & Disease, 11(1), 32.

    Article  Google Scholar 

  7. Liang, Y., Wang, H., Chen, B., Mao, Q., Xia, W., Zhang, T., Song, X., Zhang, Z., Xu, L., Dong, G., et al. (2021). circDCUN1D4 suppresses tumor metastasis and glycolysis in lung adenocarcinoma by stabilizing TXNIP expression. Molecular Therapy Nucleic Acids, 23, 355–368.

    Article  CAS  PubMed  Google Scholar 

  8. Huang, Q., Guo, H., Wang, S., Ma, Y., Chen, H., Li, H., Li, J., Li, X., Yang, F., Qiu, M., et al. (2020). A novel circular RNA, circXPO1, promotes lung adenocarcinoma progression by interacting with IGF2BP1. Cell death & disease, 11(12), 1031.

    Article  CAS  Google Scholar 

  9. Zhao, W., Qi, X., Liu, L., Ma, S., Liu, J., & Wu, J. (2020). Epigenetic regulation of m(6)A modifications in human cancer. Molecular Therapy Nucleic Acids, 19, 405–412.

    Article  CAS  PubMed  Google Scholar 

  10. Deng, X., Su, R., Weng, H., Huang, H., Li, Z., & Chen, J. (2018). RNA N(6)-methyladenosine modification in cancers: Current status and perspectives. Cell Research, 28(5), 507–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roundtree, I. A., Evans, M. E., Pan, T., & He, C. (2017). Dynamic RNA modifications in gene expression regulation. Cell, 169(7), 1187–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He, L., Li, H., Wu, A., Peng, Y., Shu, G., & Yin, G. (2019). Functions of N6-methyladenosine and its role in cancer. Molecular Cancer, 18(1), 176.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang, T., Kong, S., Tao, M., & Ju, S. (2020). The potential role of RNA N6-methyladenosine in cancer progression. Molecular Cancer, 19(1), 88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ping, X. L., Sun, B. F., Wang, L., Xiao, W., Yang, X., Wang, W. J., Adhikari, S., Shi, Y., Lv, Y., Chen, Y. S., et al. (2014). Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Research, 24(2), 177–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. You, Y., Liu, J., Zhang, L., Li, X., Sun, Z., Dai, Z., Ma, J., Jiao, G., & Chen, Y. (2023). WTAP-mediated m(6)A modification modulates bone marrow mesenchymal stem cells differentiation potential and osteoporosis. Cell Death & Disease, 14(1), 33.

    Article  CAS  Google Scholar 

  16. Chen, Y., Peng, C., Chen, J., Chen, D., Yang, B., He, B., Hu, W., Zhang, Y., Liu, H., Dai, L., et al. (2019). WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Molecular Cancer, 18(1), 127.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cheng, H., Wang, S. J., Li, Z., Ma, Y., & Song, Y. R. (2022). ING2-WTAP is a potential therapeutic target in non-small cell lung cancer. Biochemical and Biophysical Research Communications, 605, 31–38.

    Article  CAS  PubMed  Google Scholar 

  18. Weng, L., Qiu, K., Gao, W., Shi, C., & Shu, F. (2020). LncRNA PCGEM1 accelerates non-small cell lung cancer progression via sponging miR-433-3p to upregulate WTAP. BMC Pulmonary Medicine, 20(1), 213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cai, J., Cui, Z., Zhou, J., Zhang, B., Lu, R., Ding, Y., & Hu, H. (2022). METTL3 promotes glycolysis and cholangiocarcinoma progression by mediating the m6A modification of AKR1B10. Cancer Cell International, 22, 385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, H., You, J., Xue, H., Tan, X., & Chao, C. (2020). CircCTDP1 promotes nasopharyngeal carcinoma progression via a microRNA-320b/HOXA10/TGFβ2 pathway. International Journal of Molecular Medicine, 45(3), 836–846.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao, Y., Liu, J., Huan, J., & Che, F. (2020). Downregulation of circular RNA hsa_circ_0000735 boosts prostate cancer sensitivity to docetaxel via sponging miR-7. Cancer Cell International, 20, 334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ishola, A. A., Chien, C. S., Yang, Y. P., Chien, Y., Yarmishyn, A. A., Tsai, P. H., Chen, J. C., Hsu, P. K., Luo, Y. H., Chen, Y. M., et al. (2022). Oncogenic circRNA C190 promotes non-small cell lung cancer via modulation of the EGFR/ERK pathway. Cancer Research, 82(1), 75–89.

    Article  CAS  PubMed  Google Scholar 

  23. Chen, L., Lin, Y. H., Liu, G. Q., Huang, J. E., Wei, W., Yang, Z. H., Hu, Y. M., Xie, J. H., & Yu, H. Z. (2021). Clinical significance and potential role of LSM4 overexpression in hepatocellular carcinoma: An integrated analysis based on multiple databases. Frontiers in Genetics, 12, 804916.

    Article  CAS  PubMed  Google Scholar 

  24. Guo, Y. J., Pan, W. W., Liu, S. B., Shen, Z. F., Xu, Y., & Hu, L. L. (2020). ERK/MAPK signalling pathway and tumorigenesis. Experimental and Therapeutic Medicine, 19(3), 1997–2007.

    PubMed  PubMed Central  Google Scholar 

  25. Mendoza, M. C., Er, E. E., & Blenis, J. (2011). The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends in Biochemical Sciences, 36(6), 320–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laplante, M., & Sabatini, D. M. (2012). mTOR signaling in growth control and disease. Cell, 149(2), 274–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. You, Y., Zheng, Q., Dong, Y., Xie, X., Wang, Y., Wu, S., Zhang, L., Wang, Y., Xue, T., Wang, Z., et al. (2016). Matrix stiffness-mediated effects on stemness characteristics occurring in HCC cells. Oncotarget, 7(22), 32221–32231.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Saxton, R. A., & Sabatini, D. M. (2017). mTOR signaling in growth, metabolism, and disease. Cell, 168(6), 960–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baylin, S. B., & Jones, P. A. (2016). Epigenetic determinants of cancer. Cold Spring Harbor Perspectives in Biology, 8(9), a019505.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ou, B., Liu, Y., Yang, X., Xu, X., Yan, Y., & Zhang, J. (2021). C5aR1-positive neutrophils promote breast cancer glycolysis through WTAP-dependent m6A methylation of ENO1. Cell death & Disease, 12(8), 737.

    Article  CAS  Google Scholar 

  31. Wang, K., Wang, G., Li, G., Zhang, W., Wang, Y., Lin, X., Han, C., Chen, H., Shi, L., Reheman, A., et al. (2023). m6A writer WTAP targets NRF2 to accelerate bladder cancer malignancy via m6A-dependent ferroptosis regulation. Apoptosis : An international journal on programmed cell death, 28(3–4), 627–638.

    Article  PubMed  Google Scholar 

  32. Li, Z. X., Zheng, Z. Q., Yang, P. Y., Lin, L., Zhou, G. Q., Lv, J. W., Zhang, L. L., Chen, F., Li, Y. Q., Wu, C. F., et al. (2022). WTAP-mediated m(6)A modification of lncRNA DIAPH1-AS1 enhances its stability to facilitate nasopharyngeal carcinoma growth and metastasis. Cell Death and Differentiation, 29(6), 1137–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang, H., Weng, H., Sun, W., Qin, X., Shi, H., Wu, H., Zhao, B. S., Mesquita, A., Liu, C., Yuan, C. L., et al. (2018). Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology, 20(3), 285–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fang, H., Sun, Q., Zhou, J., Zhang, H., Song, Q., Zhang, H., Yu, G., Guo, Y., Huang, C., Mou, Y., et al. (2023). m(6)A methylation reader IGF2BP2 activates endothelial cells to promote angiogenesis and metastasis of lung adenocarcinoma. Molecular Cancer, 22(1), 99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, Z., Tan, X., Wu, R., Deng, T., Wang, H., Jiang, X., Zeng, P., & Tang, J. (2023). m6A-mediated upregulation of lncRNA-AC026356.1 promotes cancer stem cell maintenance in lung adenocarcinoma via activating Wnt signaling pathway. Aging, 15(9), 3538–3548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gerhardt, J., Steinbrech, C., Büchi, O., Behnke, S., Bohnert, A., Fritzsche, F., Liewen, H., Stenner, F., Wild, P., Hermanns, T., et al. (2011). The androgen-regulated Calcium-Activated Nucleotidase 1 (CANT1) is commonly overexpressed in prostate cancer and is tumor-biologically relevant in vitro. The American Journal of Pathology, 178(4), 1847–1860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, X., Yang, Z., Luo, X., Luo, J., Fu, W., Fang, Z., Xia, D., Li, L., & Xu, J. (2019). Calcium-activated nucleotidase 1 silencing inhibits proliferation, migration, and invasion in human clear cell renal cell carcinoma. Journal of Cellular Physiology, 234(12), 22635–22647.

    Article  CAS  PubMed  Google Scholar 

  38. Yao, Q., Yu, Y., Wang, Z., Zhang, M., Ma, J., Wu, Y., Zheng, Q., & Li, J. (2022). CANT1 serves as a potential prognostic factor for lung adenocarcinoma and promotes cell proliferation and invasion in vitro. BMC Cancer, 22(1), 117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Niu, Y., Fan, L., Shi, X., Wu, J., Wang, T., & Hou, X. (2023). Circ_0001715 accelerated lung adenocarcinoma process by the miR-1322/CANT1 axis. Diagnostic pathology, 18(1), 91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao, F., Hu, X., Liu, W., Wu, H., Mu, Y., & Zhao, Y. (2022). Calcium-activated nucleotides 1 (CANT1)-driven nuclear factor-k-gene binding (NF-ĸB) signaling pathway facilitates the lung cancer progression. Bioengineered, 13(2), 3183–3193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Taniguchi, K., & Karin, M. (2018). NF-κB, inflammation, immunity and cancer: Coming of age. Nature Reviews Immunology, 18(5), 309–324.

    Article  CAS  PubMed  Google Scholar 

  42. Xu, Z., Lv, B., Qin, Y., & Zhang, B. (2022). Emerging roles and mechanism of m6A methylation in cardiometabolic diseases. Cells, 11(7), 1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and Methodology: ZC and YL; Formal analysis and Data curation: YL, XC and HZ; Validation and Investigation: HZ and YL; Writing—original draft preparation and Writing—review and editing: HZ, ZC and YL; Approval of final manuscript: all authors.

Corresponding author

Correspondence to Xiaoping Cai.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Patient Consent for Publication

Not applicable.

Ethical Approval

The present study was approved by the ethical review committee of Lishui People’s Hospital. Written informed consent was obtained from all enrolled patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Cao, Z., Lv, Y. et al. WTAP-mediated N6-methyladenine Modification of circEEF2 Promotes Lung Adenocarcinoma Tumorigenesis by Stabilizing CANT1 in an IGF2BP2-dependent Manner. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01134-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01134-5

Keywords

Navigation