Skip to main content
Log in

Phytochemistry of Medicinal Herbs Belongs to Asclepiadaceae Family for Therapeutic Applications: A Critical Review

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The world of pharmaceutical research has been increasingly turning its gaze toward the treasure trove of natural products in search of novel drugs and therapeutic agents. Amidst the vast array of medicinal plants that dot our planet, the Asclepiadaceae family unexplored species have piqued the interest of researchers. Both medicinal plants are indigenous to specific regions and have been integral to traditional medicine systems for centuries. This systematic review aims to provide a comprehensive summary of the current knowledge regarding the phytochemical profile of these plants and their potential implications in the pharmaceutical industry. These plants are rich in phytochemical constituents such as alkaloids, flavonoids, terpenoids, phenolic compounds, glycosides, and saponins. These constituents have been found to exhibit a range of pharmacological activities. They have antimicrobial properties, providing a defense against various microorganisms. They also show anti-inflammatory properties, helping to reduce inflammation in the body. In addition, these plants have antioxidant properties, which help protect cells from damage by harmful free radicals. They have shown anticancer activity, offering potential for cancer treatment. Their neuroprotective properties could be beneficial in treating neurological disorders. The analgesic properties of these plants could be harnessed for pain relief. Furthermore, they have antidiabetic properties, offering potential for diabetes management. The hope is that this review will stimulate further research into these fascinating plants and contribute to discovering new drugs from natural herbs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data supporting this study’s findings are available from the corresponding author, PB, upon reasonable request.

References

  1. Abhilasha, M., & Mohd, A. (2012). Terpenoid glycosides from the roots of Calotropis procera (Ait.) R. Br. Der Pharmacia Lettre, 4(1), 307–313.

  2. Acheuk, F., & Doumandji-Mitiche, B. (2013). Insecticidal activity of alkaloids extract of Pergularia tomentosa (Asclepiadaceae) against fifth instar larvae of Locusta migratoria cinerascens (Fabricius 1781)(Orthoptera: Acrididae). International Journal of Science and Advanced Technology, 3(6), 8–13.

    Google Scholar 

  3. Al-Dalahmeh, Y., Al-Bataineh, N., Al-Balawi, S. S., Lahham, J. N., Al-Momani, I. F., Al-Sheraideh, M. S., Mayyas, A. S., Abu Orabi, S. T., & Al-Qudah, M. A. (2022). LC-MS/MS screening, total phenolic, flavonoid and antioxidant contents of crude extracts from three asclepiadaceae species growing in Jordan. Molecules, 27(3), 859. https://www.mdpi.com/1420-3049/27/3/859

  4. Aliyu, A., Ibrahim, H., Musa, A., Ibrahim, M., Oyewale, A., & Amupitan, J. (2010). In vitro evaluation of antioxidant activity of Anisopus mannii NE Br. African journal of biotechnology, 9(16), 2437–2441.

    Google Scholar 

  5. Arthan, S., & Yenjai, C. (2023). Chemical constituents and their anti-inflammatory activities from the stems of Cryptolepis buchanani. Trends in Sciences, 20(2), 6366–6366.

    Article  Google Scholar 

  6. Awasthi, S., Irshad, M., Das, M., Ganti, S., & Rizvi, M. A. (2009). Anti-inflammatory activity of Calotropis gigantea and Tridax procumbens on carrageenin-induced paw edema in rats. Ethnobotanical leaflets, 2009(5), 2.

    Google Scholar 

  7. Ayanaw, M. A., Yesuf, J. S., & Birru, E. M. (2023). Evaluation of Analgesic and Anti-inflammatory Activities of Methanolic Leaf and Root Extracts of Gomphocarpus purpurascens A. Rich (Asclepiadaceae) in Mice. Journal of Experimental Pharmacology, 1–11.

  8. Babre, N. P., Gouda, T. S., & Gowrishankar, N. L. (2018). Phytochemical composition and invitro antioxidant activity of methanolic and aqueous extracts of aerial part of Pentatropis nivalis (Asclepiadaceae). International Journal of Phytomedicine, 10(1), 68–72.

    Article  CAS  Google Scholar 

  9. Bailly, C. (2021). Anticancer properties of caudatin and related C-21 steroidal glycosides from Cynanchum plants. Steroids. https://doi.org/10.1016/j.steroids.2021.108855

    Article  PubMed  Google Scholar 

  10. Basir, S., Akbar, M. A., Talip, N., Baharum, S. N., & Bunawan, H. (2022). An integrative volatile terpenoid profiling and transcriptomics analysis in Hoya cagayanensis, Hoya lacunosa and Hoya coriacea (Apocynaceae, Marsdenieae). Horticulturae, 8(3), 224.

    Article  Google Scholar 

  11. Bharathamma, G., & Sudarsanam, G. (2015). Phytochemical Investigation Of Aqueous Fruit Extracts Of Dregea Volubilis (Linn.) Benth. Indian Journal of Plant Sciences, 4(1).

  12. Bhaskar, V., & Balakrishnan, N. (2009). Analgesic, anti-inflammatory and antipyretic activities of Pergularia daemia and Carissa carandas.

  13. Bhopanna, B., Bhagyalakmi, N., Rathod, S., Balaram, R., & Kanan, J. (1997). Cell culture derived Hemidesmus indicus in prevention of hypercholestemia in normal and hyperlipedimic rats. Indian Journal of Pharmacology, 29, 105–109.

    Google Scholar 

  14. Biswas, M., Haldar, P. K., & Ghosh, A. K. (2010). Antioxidant and free-radical-scavenging effects of fruits of Dregea volubilis. Journal of Natural Science, Biology, and Medicine, 1(1), 29.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chanwitheesuk, A., Teerawutgulrag, A., & Rakariyatham, N. (2005). Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chemistry, 92(3), 491–497.

    Article  CAS  Google Scholar 

  16. Chuang, T.-H., Lee, S.-J., Yang, C.-W., & Wu, P.-L. (2006). Expedient synthesis and structure–activity relationships of phenanthroindolizidine and phenanthroquinolizidine alkaloids. Organic & Biomolecular Chemistry, 4(5), 860–867.

    Article  CAS  Google Scholar 

  17. Cyriac, A., Thomas, T., & Thomas, T. D. (2020). Tylophorine: sources, properties, applications and biotechnological production. Plant-derived Bioactives: Production, Properties and Therapeutic Applications, 167–176.

  18. Ashok, D., & K., Saha, P., Islam, A., Mazumder, U. K., & Gupta, M. (2010). Antimicrobial and lipid peroxidation inhibition activity of Oxystelma esculentum (Asclepiadaceae). Oriental Pharmacy and Experimental Medicine, 10(3), 208–213.

    Article  Google Scholar 

  19. De Leo, M., Braca, A., De Tommasi, N., Norscia, I., Morelli, I., Battinelli, L., & Mazzanti, G. (2004). Phenolic compounds from Baseonema acuminatum leaves: Isolation and antimicrobial activity. Planta Medica, 70(09), 841–846.

    Article  PubMed  Google Scholar 

  20. Doshi, H., Satodiya, H., Thakur, M. C., Parabia, F., & Khan, A. (2011). Phytochemical screening and biological activity of Calotropis Procera (Ait). R. Br.(Asclepiadaceae) against selected bacteria and Anopheles stephansi Larvae. Proteins, 3(15), 22.

    Google Scholar 

  21. El-Bakry, A., Genady, E., Ghazi, S., & Rafat, S. (2011). Regeneration, cardenolide and flavonoid production from in vitro cultures of Cynanchum acutum L.(Asclepiadaceae). Australian Journal of Basic and Applied Sciences, 5(6), 704–717.

    CAS  Google Scholar 

  22. Elumalai, K., Dhanasekaran, S., & Krishnappa, K. (2013). Larvicidal activity of Saponin isolated from Gymnema sylvestre R. Br.(Asclepiadaceae) against Japanese Encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae). European Review for Medical & Pharmacological Sciences, 17(10).

  23. Enegide, C., & Okhale, S. E. (2023). Ethnomedicinal, phytochemical, and pharmacological review of asclepiadaceae. Journal of Preventive, Diagnostic and Treatment Strategies in Medicine, 2(1), 3.

    Google Scholar 

  24. Ezekwe, C., Ezea, S., & Nwodo, O. (2014). Evaluation of hypoglycaemic activity of ethanol extract of Gongronema latifolium (Asclepiadaceae) leaves. African Journal of Biotechnology, 13(27), 2750.

    Article  Google Scholar 

  25. Fatani, A. J., Al-Rejaie, S. S., Abuohashish, H. M., Al-Assaf, A., Parmar, M. Y., Ola, M. S., & Ahmed, M. M. (2015). Neuroprotective effects of Gymnema sylvestre on streptozotocin-induced diabetic neuropathy in rats. Experimental and Therapeutic Medicine, 9(5), 1670–1678.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fawzy, G. A., Abdallah, H. M., Marzouk, M. S., Soliman, F. M., & Sleem, A. A. (2008). Antidiabetic and antioxidant activities of major flavonoids of Cynanchum acutum L.(Asclepiadaceae) growing in Egypt. Zeitschrift für Naturforschung C, 63(9–10), 658–662.

    Article  CAS  Google Scholar 

  27. Fu, Y., Lee, S. K., Min, H.-Y., Lee, T., Lee, J., Cheng, M., & Kim, S. (2007). Synthesis and structure–activity studies of antofine analogues as potential anticancer agents. Bioorganic & Medicinal Chemistry Letters, 17(1), 97–100.

    Article  CAS  Google Scholar 

  28. Gao, Z.-L., He, H.-P., Di, Y.-T., Fang, X., Li, C.-S., Liu, H.-Y., Zhou, Q.-L., Mu, Q.-Z., & Hao, X.-J. (2009). Gracillosides A-F, six new 8,14-seco-pregnane glycosides from Adelostemma gracillimum. Steroids, 74(8), 694–700. https://doi.org/10.1016/j.steroids.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  29. Han, L., Zhou, X., Yang, M., Zhou, L., Deng, X., Wei, S., Wang, W., Wang, Z., Qiao, X., & Bai, C. (2018). Ethnobotany, phytochemistry and pharmacological effects of plants in genus Cynanchum Linn.(Asclepiadaceae). Molecules, 23(5), 1194.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Haroon, H. B., & Murali, A. (2016). Antihyperglycemic and neuroprotective effects of Wattakaka volubilis (Lf) Stapf root against streptozotocin induced diabetes. Brazilian Journal of Pharmaceutical Sciences, 52, 413–424.

    Article  CAS  Google Scholar 

  31. Hassan, L., Yusuf, A., Muhammad, N., Ogbiko, C., & Mustapha, M. (2020). In vitro phytochemical screening and anti-snake venom activity of the methanol leaf and stem bark extracts of Leptadenia hastata (Asclepiadaceae) against Naja nigricollis. Journal of Health Science, 7(3), 11–14.

    Google Scholar 

  32. Hassan, S., Bilbis, F., Ladan, M., Umar, R., Dangoggo, S., Saidu, Y., Abubakar, M., & Faruk, U. (2006). Evaluation of antifungal activity and phytochemical analysis of leaves, roots and stem barks extracts of Calotropis procera (Asclepiadaceae). Pakistan Journal of Biological Sciences, 9(14), 2624–2629.

    Article  Google Scholar 

  33. Hassan, S., Umar, R., Ladan, M., Nyemike, P., Wasagu, R., Lawal, M., & Ebbo, A. (2007). Nutritive value, phytochemical and antifungal properties of Pergularia tomentosa L(Asclepiadaceae). International Journal of Pharmacology, 3(4), 334–340.

    Article  CAS  Google Scholar 

  34. Hemavani, C., & Thippeswamy, B. (2012). Evaluation of antimicrobial activity of root extract of Asclepias curassavica. Recent Research in Science and Technology, 4(1).

  35. Hoekou, P. Y., Tchacondo, T., Gbogbo, K. A., Tchelougou, D., Pissang, P., Karou, S. D., Améyapohm, Y., Batawila, K., Annigoni, P., & Faso, B. (2015). Antibacterial activities of three latex plants of Asclepiadaceae family used in traditional medicine in South Togo. International Journal of Current Microbiology and Applied Sciences, 4(5), 882–891.

    CAS  Google Scholar 

  36. Ibrahim, A., & Bashir, M. (2021). Liquid Chromatography Mass Spectrometer (Lc/Ms) profile revealed flavonoids and terpenoids with antioxidant potential in aqueous fraction of Combretum micranthum leaf extract. Zanco J. Pure Appl Sci, 7(4), 236–247.

    Google Scholar 

  37. Ibrahim, A. H., Al-Rawi, S. S., Majid, A. M. S. A., Rahman, N. N. A., Salah, K. M. A., & Kadir, M. O. A. (2011). Separation and fractionation of aquilaria malaccensis oil using supercritical fluid extraction and tThe cytotoxic properties of the extracted oil. Procedia Food Science, 1, 1953–1959. https://doi.org/10.1016/j.profoo.2011.09.287

    Article  CAS  Google Scholar 

  38. Ibrahim, M. A., Aliyu, A. B., Meduteni, K., & Yunusa, I. (2013). Saponins-rich fraction of Calotropis procera leaves elicit no antitrypanosomal activity in a rat model. Asian Pacific Journal of Tropical Biomedicine, 3(7), 569–572.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Janapati, Y., Ahemad, R., Jayaveera, K., & Reddy, R. (2008). Anti-diabetic activity of ethanolic extract of Holostemma ada Kodien Schults in alloxan induced diabetic rats. The Internet Journal of Endocrinology, 5(2), 1–6.

    Google Scholar 

  40. Jia, X.-H., Zhao, H.-X., Du, C.-L., Tang, W.-Z., & Wang, X.-J. (2021). Possible pharmaceutical applications can be developed from naturally occurring phenanthroindolizidine and phenanthroquinolizidine alkaloids. Phytochemistry Reviews, 20(4), 845–868. https://doi.org/10.1007/s11101-020-09723-3

    Article  CAS  PubMed  Google Scholar 

  41. Jin Qiduan, M. Q. (1987). The constituents of c21-steroids from dregea sinensis var. corrugata. Plant Diversity, 9(02), 1–3.

    Google Scholar 

  42. Kannappan, A., Srinivasan, R., Nivetha, A., Annapoorani, A., Pandian, S. K., & Ravi, A. V. (2019). Anti-virulence potential of 2-hydroxy-4-methoxybenzaldehyde against methicillin-resistant Staphylococcus aureus and its clinical isolates. Applied Microbiology and Biotechnology, 103, 6747–6758.

    Article  CAS  PubMed  Google Scholar 

  43. Kinda, P. T., Guenne, S., Basile Tindano, N., Ouedraogo, N. O., Zerbo, P., Elena, R., Duta, A. C., & Kiendrebeogo, M. (2021). Studying some neuroprotective effects of Calotropis procera extracts against scopolamine-induced neuropschiatric comorbidities in a rodent model of epilepsy. Romanian Biotechnological Letters., 26, 3114.

    Article  CAS  Google Scholar 

  44. Koike, K., Bevelle, C., Talapatra, S., Cordell, G., & Farnsworth, N. (1980). Potential anticancer agents. V. Cardiac glycosides of Asclepias albicans (Asclepiadaceae). Chemical and Pharmaceutical Bulletin, 28(2), 401–405.

    Article  CAS  PubMed  Google Scholar 

  45. Kshirsagar, A., Patil, P., Ashok, P., & Hulkoti, B. (2008). Anti-inflammatory and anti-ulcer effects of Calotropis gigantea R. Br flowers in rodent. Journal of Natural Remedies, 8(2), 183–190.

    Google Scholar 

  46. Kumar, A. R., Rathinam, K., & Kumar, C. A. (2012). Evaluation of Antiinflammatory activity of some selected species of Asclepiadaceae Family. International Journal of Chemical Sciences, 10(1), 548–556.

    Google Scholar 

  47. Laupattarakasem, P., Wangsrimongkol, T., Surarit, R., & Hahnvajanawong, C. (2006). In vitro and in vivo anti-inflammatory potential of Cryptolepis buchanani. Journal of Ethnopharmacology, 108(3), 349–354. https://doi.org/10.1016/j.jep.2006.05.029

    Article  PubMed  Google Scholar 

  48. Lee, D.-U., Kang, S.-I., Yoon, S.-H., Budesinsky, M., Kasal, A., Mayer, K. K., & Wiegrebe, W. (2000). A new steroidal alkaloid from the roots of Cynanchum caudatum. Planta medica, 66(05), 480–482.

    Article  CAS  PubMed  Google Scholar 

  49. Li, X., Sun, H., Ye, Y., Chen, F., & Pan, Y. (2006). C-21 steroidal glycosides from the roots of Cynanchum chekiangense and their immunosuppressive activities. Steroids, 71(1), 61–66.

    Article  CAS  PubMed  Google Scholar 

  50. Lisa, S. R., Islam, M. K., & Qais, N. (2020). Plants and plant constituents with analgesic and anti-inflammatory activities: A systematic review. Dhaka University Journal of Pharmaceutical Sciences, 19(2), 207–224.

    Article  CAS  Google Scholar 

  51. Ma, X.-X., Jiang, F.-T., Yang, Q.-X., Liu, X.-H., Zhang, Y.-J., & Yang, C.-R. (2007). New pregnane glycosides from the roots of Cynanchum otophyllum. Steroids, 72(11), 778–786.

    Article  CAS  PubMed  Google Scholar 

  52. Mahajan, R., & Badgujar, S. (2008). Phytochemical investigations of some laticiferous plants belonging to Khandesh region of Maharashtra. Ethnobotanical leaflets, 2008(1), 151.

    Google Scholar 

  53. Maheshwari, M., & Vijayarengan, P. (2020). Phytochemical screening and GC-MS analysis of Tylophora indica. Int. J. Bot. Stud, 5, 255–275.

    Google Scholar 

  54. Mali, S. S., & Shekokar, S. S. (2022). A literature review of significant pharmacological activities of few plants of asclepiadaceae family.

  55. Marc, M., Moïse, B. F. E., Joël, T. N. S., & Lebel, T. J. (2021). Evaluation of the insecticidal activity of the methanol extracts of Calotropis procera (Asclepiadaceae) and Albizia lebbeck (Mimosaceae) on larvae of Culex quinquefasciatus Say, 1823. The Journal of Basic and Applied Zoology, 82, 1–8.

    Article  Google Scholar 

  56. Minhas, A., Khan, A.-u., & Ansari, M. (2018). Anti-inflammatory effect of Caralluma edulis against acute and chronic inflammation. JAPS: Journal of Animal & Plant Sciences, 28(2).

  57. Moulisha, B., Bikash, M. N., Partha, P., Kumar, G. A., Sukdeb, B., & Kanti, H. P. (2009). In vitro anti-leishmanial and anti-tumour activities of a pentacyclic triterpenoid compound isolated from the fruits of Dregea volubilis Benth Asclepiadaceae. Tropical Journal of Pharmaceutical Research. https://doi.org/10.4314/tjpr.v8i2.44520

    Article  Google Scholar 

  58. Munazir, M., Qureshi, R., Arshad, M., & Gulfraz, M. (2012). Antibacterial activity of root and fruit extracts of Leptadenia pyrotechnica (Asclepiadaceae) from Pakistan. Pakistan Journal of Botany, 44(4), 1209–1213.

    Google Scholar 

  59. Musa, A., Aliyu, A., Yaro, A., Magaji, M., Hassan, H., & Abdullahi, M. (2009). Preliminary phytochemical, analgesic and anti-inflammatory studies of the methanol extract of Anisopus mannii (NE Br)(Asclepiadaceae) in rodents. African Journal of Pharmacy and Pharmacology, 3(8), 374–378.

    Google Scholar 

  60. Namadina, M. M., Nuhu, A., Yunusa, A., Okrikata, E., Ekong, N., & Abdulsalami, H. (2019). Pharmacognostic and toxicity study of leptadenia hastata (Pers.) Decne (Asclepiadaceae) ROOT.

  61. Nenaah, G. (2013). Antimicrobial activity of Calotropis procera Ait. (Asclepiadaceae) and isolation of four flavonoid glycosides as the active constituents. World Journal of Microbiology and Biotechnology, 29, 1255–1262.

    Article  CAS  PubMed  Google Scholar 

  62. Nenaah, G. E. (2013). Antimicrobial activity of Calotropis procera Ait. (Asclepiadaceae) and isolation of four flavonoid glycosides as the active constituents. World Journal of Microbiology & Biotechnology. https://doi.org/10.1007/s11274-013-1288-2

    Article  Google Scholar 

  63. Nowak, R., & Kawka, S. (1998). Phenolic acids in leaves of Secamone afzelii (Rhoem.) Schult.(Asclepiadaceae). Acta societatis botanicorum Poloniae, 67(3–4), 243–245.

    CAS  Google Scholar 

  64. Olaitan, O. J., Wasagu, S. R., & Adepoju-Bello, A. A. (2013). Preliminary anti-fungal activity of the aqueous bark extract of Calotropis procera (asclepiadaceae).

  65. Olaleye, O., Oladipupo, A., Oyawaluja, B., & Coker, H. (2021). Chemical composition, antioxidative and antimicrobial activities of different extracts of the leaves of parquetina nigrescens (asclepiadaceae). Progress in Chemical and Biochemical Research, 4, 359–371.

    CAS  Google Scholar 

  66. Onyancha Jared, M., Wakori, E., & Moriasi Gervason, A. (2017). In vitro antibacterial activites, safety studies and phytochemical screening of Dregea Schimperi Clark (Asclepiadaceae) extracts. World Journal of Pharmaceutical Research, 6(7), 169–178.

    CAS  Google Scholar 

  67. Orafidiya, L., & Adelusola, K. WOUND-HEALING AND POTENTIAL ANTI-KELOIDAL PROPERTIES OF THE LATEX OF CALOTROPIS PROCERA (AITON) ASCLEPIADACEAE IN RABBITS.

  68. Oyinloye, O. E., & Alabi, O. S. Preliminary phytochemical screening, antimicrobial potentials and GC-MS analysis of Secamone afzelli Rhoem (Asclepiadaceae) leaves extracts.

  69. Pandey, A., Belwal, T., Tamta, S., Bhatt, I. D., & Rawal, R. S. (2019). Phenolic compounds, antioxidant capacity and antimutagenic activity in different growth stages of in vitro raised plants of Origanum vulgare L. Molecular Biology Reports, 46(2), 2231–2241. https://doi.org/10.1007/s11033-019-04678-x

    Article  CAS  PubMed  Google Scholar 

  70. Pang, X., Kang, L.-P., Fang, X.-M., Yu, H.-S., Han, L.-F., Zhao, Y., Zhang, L.-X., Yu, L.-Y., & Ma, B.-P. (2018). C21 steroid derivatives from the Dai herbal medicine Dai-Bai-Jie, the dried roots of Marsdenia tenacissima, and their screening for anti-HIV activity. Journal of Natural Medicines, 72(1), 166–180. https://doi.org/10.1007/s11418-017-1126-1

    Article  CAS  PubMed  Google Scholar 

  71. Patel, M. R. (2017). Pharmacognostic and phytochemical evaluation of Gymnema sylvestre leaf. World Journal Pharmacy and Pharmaceutical Science, 6(7), 1532–1538.

    Article  CAS  Google Scholar 

  72. Patil, S. G., Patil, M. P., Maheshwari, V. L., & Patil, R. H. (2015). In vitro lipase inhibitory effect and kinetic properties of di-terpenoid fraction from Calotropis procera (Aiton). Biocatalysis and Agricultural Biotechnology, 4(4), 579–585. https://doi.org/10.1016/j.bcab.2015.08.014

    Article  Google Scholar 

  73. Penumala, M., Zinka, R. B., Shaik, J. B., Mallepalli, S. K. R., Vadde, R., & Amooru, D. G. (2018). Phytochemical profiling and in vitro screening for anticholinesterase, antioxidant, antiglucosidase and neuroprotective effect of three traditional medicinal plants for Alzheimer’s Disease and Diabetes Mellitus dual therapy. BMC Complementary and Alternative Medicine, 18(1), 77. https://doi.org/10.1186/s12906-018-2140-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Prabakaran, R., Kalimuthu, K., Vani, C., & Brindha, C. (2014). Angiogenesis and antioxidant activity of in vitro and in vivo tuber of ceropegia pusilla wight and arn. British Journal of Pharmaceutical Research, 4(5), 608.

    Article  Google Scholar 

  75. Prabha, M. R., & Vasantha, K. (2010). Antimicrobial activity of Pentatropis microphylla L. leaves. International Journal of PharmTech Research, 2(3), 2022–2024.

    Google Scholar 

  76. Pratheesh, K. V., Shine, V. J., Emima, J., Renju, G. L., & Rajesh, R. (2014). Study on the Anti-Cancer activity of Tylophora indica leaf extracts on human colorectal cancer cells. International Journal of Pharmacognosy Phytochemical Research, 6, 355–361.

    Google Scholar 

  77. Qasim Khan, A., & Malik, A. (1989). A steroid from Calotropis procera. Phytochemistry, 28(10), 2859–2861. https://doi.org/10.1016/S0031-9422(00)98109-3

    Article  Google Scholar 

  78. Raja, S., Ahamed, K., Kumar, V., Mukherjee, K., Bandyopadhyay, A., & Mukherjee, P. K. (2005). Antioxidant potential of aerial part of Asclepias curassavica Linn. (Family-Asclepiadaceae). Advances in Traditional Medicine, 5(2), 92–99.

    Google Scholar 

  79. Rajendran, R., Vyawahare, N., Harle, U., Ambikar, D., Khandare, R., & Gadkari, M. (2008). Evaluation of neuroprotective effect of Slimaluma in cerebral ischemia reperfusion injury in rats. Planta Medica. https://doi.org/10.1055/s-0028-1084117

    Article  Google Scholar 

  80. Rashan, L. J., Franke, K., Khine, M. M., Kelter, G., Fiebig, H. H., Neumann, J., & Wessjohann, L. A. (2011). Characterization of the anticancer properties of monoglycosidic cardenolides isolated from Nerium oleander and Streptocaulon tomentosum. Journal of Ethnopharmacology, 134(3), 781–788.

    Article  CAS  PubMed  Google Scholar 

  81. Ray, S., Nagaiah, K., & Khan, N. F. (2012). A study of anti-inflammatory activity of one novel C-21 steroidal glycoside known as carumbelloside-IV isolated from Caralluma umbellata. J PharmaSciTech, 1, 12–14.

    Google Scholar 

  82. Reddy, B. U. (2010). Enumeration of antibacterial activity of few medicinal plants by bioassay method. Journal of chemistry, 7, 1449–1453.

    Google Scholar 

  83. Royal Botanic Gardens, K. (2023). Zygostelma Benth. https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:3808-1

  84. Shanmugaraju, V., & Bhakyaraj, R. (2016). Antimicrobial potential activity of leaf extracts of Catharanthus roseus against human pathogens under laboratory conditions. Int J Curr Res Biol Med, 1, 35–51.

    Google Scholar 

  85. Share-Khao. (2022). Thai herbs are rare and the most expensive. Helps nourish the heart, relive wind, expel high blood pressure. Retrieved 7/7/2023 from https://share-khao.com/%E0%B8%AA%E0%B8%A1%E0%B8%B8%E0%B8%99%E0%B9%84%E0%B8%9E%E0%B8%A3%E0%B9%84%E0%B8%97%E0%B8%A2%E0%B8%AB%E0%B8%B2%E0%B8%A2%E0%B8%B2%E0%B8%81-%E0%B9%81%E0%B8%A5%E0%B8%B0%E0%B9%81%E0%B8%9E%E0%B8%87%E0%B8%97/

  86. Sinha, M., Patel, D., & Kanungo, V. (2012). Medicinal plants used as antidotes in northern part of Bastar district of Chhattisgarh. Journal of Ecobiotechnology, 4(1), 58.

    Google Scholar 

  87. Sivapalan, S., Dharmalingam, S., Venkatesan, V., Angappan, M., & Ashokkumar, V. (2023). Phytochemical analysis, anti-inflammatory, antioxidant activity of Calotropis gigantea and its therapeutic applications. Journal of Ethnopharmacology. https://doi.org/10.1016/j.jep.2022.115963

    Article  PubMed  Google Scholar 

  88. Sjam, S., Surapati, U., Adiwena, S., & A., Dewi, V. S., & Rosmana, A. (2018). Detection of fungi from rice black bug Paraeucosmetus pallicornis Dallas (Hemiptera: Lygaeidae) and inhibition with crude extract of Calatropis gigantea (Asclepiadaceae). IOP Conference Series: Earth and Environmental Science, 157(1), 012038. https://doi.org/10.1088/1755-1315/157/1/012038

    Article  Google Scholar 

  89. Sriset, Y., Jarukamjorn, K., & Chatuphonprasert, W. (2017). Pharmacological activities of Cryptolepis dubia (Burm. f.) MR. Almeida. Isan Journal of Pharmaceutical Sciences, 13(1), 1–10.

    Google Scholar 

  90. Srivastava, A., & Shivanandappa, T. (2010). Neuroprotective effect of Decalepis hamiltonii roots against ethanol-induced oxidative stress. Food Chemistry, 119(2), 626–629.

    Article  CAS  Google Scholar 

  91. Sugihara, Y., Nojima, H., Matsuda, H., Murakami, T., Yoshikawa, M., & Kimura, I. (2000). Antihyperglycemic effects of gymnemic acid IV, a compound derived from Gymnema sylvestre leaves in streptozotocin-diabetic mice. Journal of Asian Natural Products Research, 2(4), 321–327.

    Article  CAS  PubMed  Google Scholar 

  92. Sun, H., Blanford, S., Guo, Y., Fu, X., & Shi, W. (2012). Toxicity and influences of the alkaloids from Cynanchum komarovii AL. Iljinski (Asclepiadaceae) on growth and cuticle components of Spodoptera litura Fabricius (Noctuidae) larvae. Natural Product Research, 26(10), 903–912.

    Article  CAS  PubMed  Google Scholar 

  93. Susawaengsup, C., Choengpanya, K., Sornsakdanuphap, J., Tabtimmai, L., Chaiharn, M., & Bhuyar, P. (2023). Phytochemical and pharmacological properties of a traditional herb, Strobilanthes Cusia (Nees) Kuntze. Molecular Biotechnology. https://doi.org/10.1007/s12033-023-00897-7

    Article  PubMed  Google Scholar 

  94. Thakur, H. A. (2015). Antimicrobial and antifungal activity of Cucumis melo L. (cucurbitaceae) and Pergularia daemia Frosk. (asclpiadaceae) an ethnomedicinal plants. International Journal of Bioassay, 4, 3661–3665.

    CAS  Google Scholar 

  95. Thangadurai, D., Murthy, K., Prasad, P., & Pullaiah, T. (2004). Antimicrobial screening of Decalepis hamiltonii wight and arn.(Asclepiadaceae) root extracts against food-related microorganisms. Journal of Food Safety, 24(4), 239–245.

    Article  Google Scholar 

  96. The Royal Botanic Gardens, K. (2023). Finlaysonia pierrei (Costantin) Venter. Retrieved 4/9/2023 from https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:20003290-1

  97. Tour, N., & Talele, G. (2011). Anti-inflammatory and gastromucosal protective effects of Calotropis procera (Asclepiadaceae) stem bark. Journal of Natural Medicines, 65, 598–605.

    Article  CAS  PubMed  Google Scholar 

  98. Umehara, K., & Sumii, N., Satoh, H., Miyase, T., Kuroyanagi, M., & Ueno, A. (1995). Studies on differentiation inducers V Steroid glycosides from periplocae radicis cortex. Chemical and Pharmaceutical Bulletin, 43(9), 1565–1568.

    Article  CAS  PubMed  Google Scholar 

  99. Waltrich, K., Hoscheid, J., & Prochnau, I. (2015). Antimicrobial activity of crude extracts and fractions of Vernonia polyanthes Less (assa-peixe) flowers. Revista Brasileira de Plantas Medicinais, 17, 909–914.

    Article  CAS  Google Scholar 

  100. Wang, P., Qin, H.-L., Zhang, L., Li, Z.-H., Wang, Y.-H., & Zhu, H.-B. (2004). Steroids from the roots of Cynanchum stauntonii. Planta medica, 70(11), 1075–1079.

    Article  CAS  PubMed  Google Scholar 

  101. Wen, C., Huang, W., Zhu, X.-L., Li, X.-S., Zhang, F., & Jiang, R.-W. (2018). UGT74AN1, a permissive glycosyltransferase from Asclepias curassavica for the regiospecific steroid 3-O-glycosylation. Organic Letters, 20(3), 534–537.

    Article  CAS  PubMed  Google Scholar 

  102. Weon, J. B., Kim, C. Y., Yang, H. J., & Ma, C. J. (2012). Neuroprotective compounds isolated from Cynanchum paniculatum. Archives of Pharmacal Research, 35(4), 617–621. https://doi.org/10.1007/s12272-012-0404-4

    Article  CAS  PubMed  Google Scholar 

  103. Xin, Z., OuYang, Q., Wan, C., Che, J., Li, L., Chen, J., & Tao, N. (2019). Isolation of antofine from Cynanchum atratum BUNGE (Asclepiadaceae) and its antifungal activity against Penicillium digitatum. Postharvest Biology and Technology, 157, 110961. https://doi.org/10.1016/j.postharvbio.2019.110961

    Article  CAS  Google Scholar 

  104. Yan-yan, W., Wei, W., Hong-yan, L., Xue, X., & Fang-yan, D. (2009). Chemical Constituents of Genus Condorvine. Natural Product Research & Development, 21(1).

  105. Ye, W.-C., Zhang, Q.-W., Liu, X., Che, C.-T., & Zhao, S.-X. (2000). Oleanane saponins from Gymnema sylvestre. Phytochemistry, 53(8), 893–899.

    Article  CAS  PubMed  Google Scholar 

  106. Yildiz, I., Sen, O., Erenler, R., Demirtas, I., & Behcet, L. (2017). Bioactivity–guided isolation of flavonoids from Cynanchum acutum L. subsp. sibiricum (willd.) Rech. F. and investigation of their antiproliferative activity. Natural Product Research, 31(22), 2629–2633.

    Article  CAS  PubMed  Google Scholar 

  107. Youssef Moustafa, A. M., Khodair, A. I., & Saleh, M. A. (2009). GC-MS investigation and toxicological evaluation of alkaloids from Leptadenia pyrotechnica. Pharmaceutical Biology, 47(10), 994–1003.

    Article  CAS  Google Scholar 

  108. Yun, B., Weon, J., Lee, B., Lee, J., & Ma, C. (2012). Neuroprotective effect of compound isolated from Cynanchum paniculatum. Planta Medica. https://doi.org/10.1055/s-0032-1321351

    Article  PubMed  Google Scholar 

  109. Zabri, H., Kodjo, C., Benie, A., Bekro, J. M., & Bekro, Y. (2008). Phytochemical screening and determination of flavonoids in Secamone afzelii (Asclepiadaceae) extracts. African Journal of Pure and Applied Chemistry, 2(8), 80–82.

    Google Scholar 

  110. Zhan Xin, C. L., Liao Guangfeng, L. I., & Bing, L. U. R. (2021). Research progress of new C21-steroids in medicinal plant of Asclepiadaceae (I). Journal of Guangxi Normal University, 39(5), 1–29.

    Google Scholar 

  111. Zhang, M.-Q., Liu, Y., Xie, S.-X., Xu, T.-H., Liu, T.-H., Xu, Y.-J., & Xu, D.-M. (2012). A new triterpenoid saponin from Gymnema sylvestre. Journal of Asian Natural Products Research, 14(12), 1186–1190.

    Article  PubMed  Google Scholar 

  112. Zhao, Z.-M., Sun, Z.-H., Chen, M.-H., Liao, Q., Tan, M., Zhang, X.-W., Zhu, H.-D., Pi, R.-B., & Yin, S. (2013). Neuroprotective polyhydroxypregnane glycosides from Cynanchum otophyllum. Steroids, 78(10), 1015–1020.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Navytchmathra Gammatantrawet; Prakash Bhuyar; Data curation: Prakash Bhuyar; Formal analysis: Prakash Bhuyar; Funding acquisition: Prakash Bhuyar; Investigation: Prakash Bhuyar; Methodology: Navytchmathra Gammatantrawet; Prakash Bhuyar; Project administration: Prakash Bhuyar; Resources: Prakash Bhuyar; Software: Prakash Bhuyar; Supervision Prakash Bhuyar; Validation: Chanthana Susawaengsup, Prakash Bhuyar; Visualization: Prakash Bhuyar; Writing – original draft: Navytchmathra Gammatantrawet; Prakash Bhuyar; Writing – review & editing: Navytchmathra Gammatantrawet, Chuyên Thuận Nguyễn, Chanthana Susawaengsup,, Aizi Nor Mazila Ramli, Krittiya Tongkoom, Tawan Chatsungnoen, Rapeephun Dangtungee, Prakash Bhuyar.

Corresponding author

Correspondence to Prakash Bhuyar.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Ethical Approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gammatantrawet, N., Nguyễn, C.T., Susawaengsup, C. et al. Phytochemistry of Medicinal Herbs Belongs to Asclepiadaceae Family for Therapeutic Applications: A Critical Review. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01122-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01122-9

Keywords

Navigation