Abstract
Breast cancer is considered a significant health concern worldwide, with genetic predisposition playing a critical role in its etiology. Single nucleotide polymorphisms (SNPs), particularly those within the 3' untranslated regions (3'UTRs) of target genes, are emerging as key factors in breast cancer susceptibility. Specifically, miRNAs have been recognized as possible novel approach for biomarkers discovery for both prognosis and diagnosis due to their direct association with cancer progression. Regional disparities in breast cancer incidence underscore the need for precise interventions, considering socio-cultural and economic factors. This review explores into the differential effects of SNP-miRNA interactions on breast cancer risk, emphasizing both risk-enhancing and protective associations across diverse populations. Furthermore, it explores the clinical implications of these findings, highlighting the potential of personalized approaches in breast cancer management. Additionally, it reviews the evolving therapeutic prospect of microRNAs (miRNAs), extending beyond cancer therapeutics to encompass various diseases, indicative of their versatility as therapeutic agents.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
Not applicable.
Abbreviations
- SNPs:
-
Single Nucleotides Polymorphism
- SYK:
-
Spleen Tyrosine Kinase
References
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA a Cancer Journal for Clinicians, 68, 394–424.
Economopoulou, P., Dimitriadis, G., & Psyrri, A. (2015). Beyond BRCA: New hereditary breast cancer susceptibility genes. Cancer Treatment Reviews, 41, 1–8.
Michailidou, K., Lindström, S., Dennis, J., Beesley, J., Hui, S., Kar, S., & Humphreys, K. (2017). Association analysis identifies 65 new breast cancer risk loci. Nature, 551, 92–99.
Mavaddat, N., Mavaddat, N., Michailidou, K., Dennis, J., Lush, M., Fachal, L., Lee, A., & MacInnis, R. J. (2019). Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. American Journal of Human Genetics, 104, 21–34.
Jurj, M. A., Buse, M., Zimta, A. A., Paradiso, A., Korban, S. S., Pop, L. A., & Berindan-Neagoe, I. (2020). Critical analysis of genome-wide association studies: Triple negative breast cancer quae exempli causa. International Journal of Molecular Sciences, 21(16), 5835.
Auton, A., & Salcedo, T. (2015). The 1000 genomes project. Assessing rare variation in complex traits: Design and analysis of genetic studies (pp. 71–85). Springer.
Mavaddat, N., Pharoah, P. D., Michailidou, K., Tyrer, J., Brook, M. N., Bolla, M. K., Wang, Q., Dennis, J., Dunning, A. M., Shah, M., & Haiman, C. A. (2015). Prediction of breast cancer risk based on profiling with common genetic variants. Journal of National Cancer Institute, 107, djv036.
Hausser, J., & Zavolan, M. (2014). Identification and consequences of miRNA-target interactions–beyond repression of gene expression. Nature Reviews Genetics, 15(9), 599–612. https://doi.org/10.1038/nrg3765
Iqbal, M. U. N., Yaqoob, T., Ali, S. A., & Khan, T. A. (2019). A functional polymorphism (rs6265, G>A) of brain-derived neurotrophic factor gene and breast cancer: An association study. Breast Cancer, 13, 1178223419844977. https://doi.org/10.1177/1178223419844977
Chhikara, B. S., & Parang, K. (2023). Global cancer statistics 2022: The trends projection analysis. Chemical Biology Letters, 10(1), 451–451.
Yardim-Akaydin, S., Karahalil, B., & Baytas, S. N. (2022). New therapy strategies in the management of breast cancer. Drug Discovery Today, 27(6), 1755–1762.
Sethi, S., Sethi, S., & Bluth, M. H. (2018). Clinical implication of microRNAs in molecular pathology: An update for 2018. Clinics in Laboratory Medicine, 38(2), 237–251. https://doi.org/10.1016/j.cll.2018.02.003
Wendt, C., & Margolin, S. (2019). Identifying breast cancer susceptibility genes–a review of the genetic background in familial breast cancer. Acta Oncologica, 58(2), 135–146.
Couto, E., & Hemminki, K. (2007). Estimates of heritable and environmental components of familial breast cancer using family history information. British Journal of Cancer, 96, 1740–1742.
Easton, D. F., Pharoah, P. D., Antoniou, A. C., Tischkowitz, M., Tavtigian, S. V., Nathanson, K. L., & Foulkes, W. D. (2015). Gene-panel sequencing and the prediction of breast-cancer risk. New England Journal of Medicine, 372(23), 2243–2257.
Renwick, A., Thompson, D., Seal, S., Kelly, P., Chagtai, T., Ahmed, M., & Rahman, N. (2006). ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nature Genetics, 38, 873–875.
Casadei, S., Norquist, B. M., Walsh, T., Stray, S., Mandell, J. B., Lee, M. K., Stamatoyannopoulos, J. A., & King, M. C. (2011). Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer Research, 71(6), 2222–2229.
Cybulski, C., Carrot-Zhang, J., Kluźniak, W., Rivera, B., Kashyap, A., Wokołorczyk, D., & Akbari, M. R. (2015). Germline RECQL mutations are associated with breast cancer susceptibility. Nature Genetics, 47, 643–646.
Catalanotto, C., Cogoni, C., & Zardo, G. (2016). MicroRNA in control of gene expression: An overview of nuclear functions. International Journal of Molecular Sciences, 17, 1712.
Loh, H. Y., Norman, B. P., Lai, K. S., Rahman, N. M. A. N. A., Alitheen, N. B. M., & Osman, M. A. (2019). The regulatory role of miRNAs in breast cancer. International Journal of Molecular Sciences, 20(19), 4940.
Hinske, L. C., França, G. S., Torres, H. A., Ohara, D. T., Lopes-Ramos, C. M., Heyn, J., & Galante, P. A. (2014). miRIAD–integrating microRNA inter- and intragenic data. Database, 2014, bau099.
Liu, B., Shyr, Y., Cai, J., & Liu, Q. (2019). Interplay between miRNAs and host genes and their role in cancer. Briefings in Functional Genomics, 18, 255–266.
Chang, T. C., & Mendell, J. T. (2007). microRNAs in vertebrate physiology and human disease. Annual Review of Genomics and Human Genetics, 8, 215–239. https://doi.org/10.1146/annurev.genom.8.080706.092351
O’Brien, J., Hayder, H., Zayed, Y., & Peng, C. (2018). Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in Endocrinology, 9, 402. https://doi.org/10.3389/fendo.2018.00402
Hannafon, B. N., Carpenter, K. J., Berry, W. L., Janknecht, R., Dooley, W. C., & Ding, W. Q. (2015). Exosome-mediated microRNA signaling from breast cancer cells is altered by the anti-angiogenesis agent docosahexaenoic acid (DHA). Molecular Cancer, 14, 133. https://doi.org/10.1186/s12943-015-0400-7s
Jiang, Y., Chen, J., Wu, J., Hu, Z., Qin, Z., Liu, X. A., & Shen, H. (2013). Evaluation of genetic variants in microRNA biosynthesis genes and risk of breast cancer in Chinese women. International Journal of Cancer, 133(9), 2216–2224. https://doi.org/10.1002/ijc.28237
Leaderer, D., Hoffman, A. E., Zheng, T., Fu, A., Weidhaas, J., Paranjape, T., & Zhu, Y. (2011). Genetic and epigenetic association studies suggest a role of microRNA biogenesis gene exportin-5 (XPO5) in breast tumorigenesis. International Journal of Molecular Epidemiology and Genetics, 2(1), 9.
Cho, S. H., Ko, J. J., Kim, J. O., Jeon, Y. J., Yoo, J. K., Oh, J., Oh, D., Kim, J. W., & Kim, N. K. (2015). 3’-UTR polymorphisms in the MiRNA machinery genes DROSHA, DICER1, RAN, and XPO5 are associated with colorectal cancer risk in a Korean population. PLoS ONE, 10(7), e0131125. https://doi.org/10.1371/journal.pone.0131125
Osuch-Wojcikiewicz, E., Bruzgielewicz, A., Niemczyk, K., Sieniawska-Buccella, O., Nowak, A., Walczak, A., & Majsterek, I. (2015). Association of polymorphic variants of miRNA processing genes with larynx cancer risk in a polish population. Biomed Research International, 2015, 298378. https://doi.org/10.1155/2015/298378
Bermisheva, M. A., Takhirova, Z. R., Gilyazova, I. R., & Khusnutdinova, E. K. (2018). MicroRNA biogenesis pathway gene polymorphisms are associated with breast cancer risk. Russian Journal of Genetics (Translation of Genetika (Moscow, Russian Federation)), 54(5), 568–575. https://doi.org/10.1134/S1022795418040051
Fawzy, M. S., Toraih, E. A., Alelwani, W., Kattan, S. W., Alnajeebi, A. M., & Hassan, R. (2020). The prognostic value of microRNA-biogenesis genes Argonaute 1 and 2 variants in breast cancer patients. American Journal of Translational Research, 12(5), 1994–2006.
Cao, J., Luo, C., Yan, R., Peng, R., Wang, K., Wang, P., & Song, C. (2016). rs15869 at miRNA binding site in BRCA2 is associated with breast cancer susceptibility. Medical Oncology, 33(12), 135. https://doi.org/10.1007/s12032-016-0849-2
Sung, H., Lee, K. M., Choi, J. Y., Han, S., Lee, J. Y., Li, L., Park, S. K., Yoo, K. Y., Noh, D. Y., Ahn, S. H., & Kang, D. (2011). Common genetic polymorphisms of microRNA biogenesis pathway genes and risk of breast cancer: A case–control study in Korea. Breast Cancer Research and Treatment, 130(3), 939–951. https://doi.org/10.1186/1471-2407-12-195
Shu, X., Long, J., Cai, Q., Kweon, S. S., Choi, J. Y., Kubo, M., Park, S. K., Bolla, M. K., Dennis, J., Wang, Q., & Yang, Y. (2020). Identification of novel breast cancer susceptibility loci in meta-analyses conducted among Asian and European descendants. Nature Communications, 11(1), 1217.
Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: A Cancer Journal for Clinicians, 69(1), 7–34.
Devericks, E. N., Carson, M. S., McCullough, L. E., Coleman, M. F., & Hursting, S. D. (2022). The obesity-breast cancer link: A multidisciplinary perspective. Cancer Metastasis Reviews. https://doi.org/10.1007/s10555-022-10043-5
Daly, M. E., Singh, N., Ismaila, N., Antonoff, M. B., Arenberg, D. A., Bradley, J., & Simone, C. B. (2022). Management of stage III NonSmall-cell lung cancer: ASCO guideline. Journal of Clinical Oncology, 40(12), 1356–1384.
Mathur, P., Sathishkumar, K., Chaturvedi, M., Das, P., Sudarshan, K. L., Santhappan, S., Nallasamy, V., John, A., Narasimhan, S., Roselind, F. S., ICMR-NCDIR-NCRP Investigator Group. (2020). Cancer statistics, 2020: Report from national cancer registry programme, India. JCO Global Oncology, 6, 1063–1075.
Barathe, P. C., Haridas, H. T., Soni, P., Kudiya, K. K., Krishnan, J. B., Dhyani, V. S., Rajendran, A., Sirur, A. J., & Pundir, P. (2022). Cost of breast cancer diagnosis and treatment in India: a scoping review protocol. British Medical Journal Open, 12(3), e057008.
Xia, C., Dong, X., Li, H., Cao, M., Sun, D., He, S., Yang, F., Yan, X., Zhang, S., Li, N., & Chen, W. (2022). Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chinese Medical Journal (England), 135(5), 584–590.
Zhang, S., Sun, K., Zheng, R., Zeng, H., Wang, S., Chen, R., Wei, W., & He, J. (2021). Cancer incidence and mortality in China 2015. Journal of the National Cancer Center, 1(1), 2–11.
Chakraborty, A. R., Sharma, G., Sharma, B. K., & Sarkar, S. S. L. (2018). The novel strategies for next-generation cancer treatment: miRNA combined with chemotherapeutic agents for the treatment of cancer. Oncotarget, 9, 10164–10174.
Bose, S. M., & Kaushik, R. (2022). Breast cancer scenario in India. Breast cancer (pp. 1–21). Springer.
Brendle, A., Lei, H., Brandt, A., Johansson, R., Enquist, K., Henriksson, R., Hemminki, K., Lenner, P., & Försti, A. (2008). Polymorphisms in predicted microRNA-binding sites in integrin genes and breast cancer: ITGB4 as prognostic marker. Carcinogenesis, 29, 1394–1399.
Tchatchou, S., Jung, A., Hemminki, K., Sutter, C., Wappenschmidt, B., Bugert, P., & Burwinkel, B. (2009). A variant affecting a putative miRNA target site in estrogen receptor (ESR) 1 is associated with breast cancer risk in premenopausal women. Carcinogenesis, 30(1), 59–64. https://doi.org/10.1093/carcin/bgn253
Zhang, L., Liu, Y., Song, F., Zheng, H., Hu, L., Lu, H., & Chen, K. (2011). Functional SNP in the microRNA-367 binding site in the 3′UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification. Proceedings of the National Academy of Sciences of the United States of America, 108(33), 13653–13658. https://doi.org/10.1073/pnas.1103360108
Zheng, H., Song, F., Zhang, L., Yang, D., Ji, P., Wang, Y., & Chen, K. (2011). Genetic variants at the miR-124 binding site on the cytoskeleton-organizing IQGAP1 gene confer differential predisposition to breast cancer. International Journal of Oncology, 38(4), 1153–1161. https://doi.org/10.3892/ijo.2011.940
Jiang, L., Deng, J., Zhu, X., Zheng, J., You, Y., Li, N., & Zhou, Y. (2012). CD44 rs13347 C>T polymorphism predicts breast cancer risk and prognosis in Chinese populations. Breast Cancer Research, 14(4), R105. https://doi.org/10.1186/bcr3225
Teo, M. T., Landi, D., Taylor, C. F., Elliott, F., Vaslin, L., Cox, D. G., & Kiltie, A. E. (2012). The role of microRNA-binding site polymorphisms in DNA repair genes as risk factors for bladder cancer and breast cancer and their impact on radiotherapy outcomes. Carcinogenesis, 33(3), 581–586. https://doi.org/10.1093/carcin/bgr300
Guan, X., Liu, H., Ju, J., Li, Y., Li, P., Wang, L. E., Brewster, A. M., Buchholz, T. A., Arun, B. K., Wei, Q., & Liu, Z. (2015). Genetic variant rs16430 6bp> 0bp at the microRNA-binding site in TYMS and risk of sporadic breast cancer risk in non-hispanic white women aged≤ 55 years. Molecular Carcinogenesis, 54(4), 281–290.
Zhou, Q., Jiang, Y., Yin, W., Wang, Y., & Lu, J. (2016). Single-nucleotide polymorphism in microRNA-binding site of SULF1 target gene as a protective factor against the susceptibility to breast cancer: a case-control study. OncoTargets and Therapy. https://doi.org/10.2147/OTT.S102433
Faryal, R., Ishfaq, M., Hayat, T., Mahjabeen, I., & Kayani, M. A. (2016). Novel SYK gene variations and changes in binding sites of miRs in breast cancer patients. Cancer Biomarkers, 16(3), 319–326. https://doi.org/10.3233/CBM-160569
Morales, S., Gulppi, F., Gonzalez-Hormazabal, P., Fernandez-Ramires, R., Bravo, T., Reyes, J. M., Gomez, F., Waugh, E., & Jara, L. (2016). Association of single nucleotide polymorphisms in Pre-miR-27a, Pre-miR-196a2, Pre-miR-423, miR-608 and Pre-miR-618 with breast cancer susceptibility in a South American population. BMC Genetics, 17, 1–10.
Wang, J., Wang, Q., Liu, H., Shao, Na., Tan, B., Zhang, G., Wang, K., Jia, Y., Ma, W., Wang, N., & Cheng, Y. (2012). The association of miR-146a rs2910164 and miR-196a2 rs11614913 polymorphisms with cancer risk: A meta-analysis of 32 studies. Mutagenesis, 27(6), 779–788. https://doi.org/10.1093/mutage/ges052
Huynh, L. H., Bui, P. T. K., Nguyen, T. T. N., & Nguyen, H. T. (2017). Developing a high resolution melting method for genotyping and predicting association of SNP rs353291 with breast cancer in the Vietnamese population. Biomedical Research and Therapy, 4(12), 1812–1831.
Chen, J., Jiang, Y., Zhou, J., Liu, S., Qin, N., Du, J., Jin, G., Hu, Z., Ma, H., Shen, H., & Dai, J. (2018). Evaluation of CpG-SNPs in miRNA promoters and risk of breast cancer. Gene, 651, 1–8.
Pirooz, H. J., Jafari, N., Rastegari, M., Fathi-Roudsari, M., Tasharrofi, N., Shokri, G., & Kouhkan, F. (2018). Functional SNP in microRNA-491-5p binding site of MMP9 3′-UTR affects cancer susceptibility. Journal of Cellular Biochemistry, 119(7), 5126–5134. https://doi.org/10.1002/jcb.26471
Fukuura, K., Inoue, Y., Miyajima, C., Watanabe, S., Tokugawa, M., Morishita, D., & Hayashi, H. (2019). The ubiquitin-specific protease USP17 prevents cellular senescence by stabilizing the methyltransferase SET8 and transcriptionally repressing p21. Journal of Biological Chemistry, 294, 16429–16439. https://doi.org/10.1074/jbc.RA119.009006
Bahreini, F., Rayzan, E., & Rezaei, N. (2021). microRNA-related single-nucleotide polymorphisms and breast cancer. Journal of Cellular Physiology, 236(3), 1593–1605.
Siasi, E., & Solimani, M. (2020). Associations of single nucleotide polymorphism in miR-146a gene with susceptibility to breast cancer in the Iranian female. Asian Pacific Journal of Cancer Prevention, 21(6), 1585.
Liu, Y., Gui, Y. F., Liao, W. Y., Zhang, Y. Q., Zhang, X. B., Huang, Y. P., Wu, F. M., Huang, Z., & Lu, Y. F. (2021). Association between miR-27a rs895819 polymorphism and breast cancer susceptibility: Evidence based on 6118 cases and 7042 controls. Medicine, 100(2), e23834.
Wynendaele, J., Bohnke, A., Leucci, E., Nielsen, S. J., Lambertz, I., Hammer, S., & Bartel, F. (2010). An illegitimate microRNA target site within the 3′ UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Cancer Research, 70(23), 9641–9649. https://doi.org/10.1158/0008-5472.CAN-10-0527
Yasmeen, N., Kumar, V., & Shaikh, K. D. (2021). Impact of MicroRNA polymorphisms on breast cancer susceptibility. Genetic polymorphism and cancer susceptibility (pp. 53–77). Springer.
Hammond, S. M. (2015). An overview of microRNAs. Advanced Drug Delivery Reviews, 87, 3–14. https://doi.org/10.1016/j.addr.2015.05.001
Rajman, M., & Schratt, G. (2017). MicroRNAs in neural development: From master regulators to finetuners. Development, 144(13), 2310–2322. https://doi.org/10.1242/dev.144337
Bensen, J. T., Graff, M., Young, K. L., Sethupathy, P., Parker, J., Pecot, C. V., & Olshan, A. F. (2018). A survey of microRNA single nucleotide polymorphisms identifies novel breast cancer susceptibility loci in a case-control, population-based study of African American women. Breast Cancer Research, 20(1), 45. https://doi.org/10.1186/s13058-018-0964-4
Kwok, G. T., Zhao, J. T., Weiss, J., Mugridge, N., Brahmbhatt, H., MacDiarmid, J. A., Robinson, B. G., & Sidhu, S. B. (2017). Translational applications of microRNAs in cancer, and therapeutic implications. Non-Coding RNA Research, 2(3–4), 143–150. https://doi.org/10.1016/j.ncrna.2017.12.002
Rooij, E., Purcell, A. L., & Levin, A. A. (2012). Developing microRNA therapeutics. Circulation Research, 110(3), 496–507. https://doi.org/10.1161/CIRCRESAHA.111.247916
Yan, L. X., Wu, Q. N., Zhang, Y., Li, Y. Y., Liao, D. Z., Hou, J. H., Fu, J., Zeng, M. S., Yun, J. P., Wu, Q. L., Zeng, Y. X., & Shao, J. Y. (2011). Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer Research, 13(1), R2. https://doi.org/10.1186/bcr2803
Ishida, M., & Selaru, F. M. (2013). miRNA-based therapeutic strategies. Current Pathobiology Reports, 1, 63–70.
Kaboli, P. J., Rahmat, A., Ismail, P., & Ling, K. H. (2015). MicroRNA-based therapy and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacological research, 97, 104–121.
Tan, W., Liu, B., Qu, S., Liang, G., Luo, W., & Gong, C. (2018). MicroRNAs and cancer: Key paradigms in molecular therapy. Oncology Letters, 15, 2735–2742.
Rahman, M. M., Brane, A. C., & Tollefsbol, T. O. (2019). MicroRNAs and epigenetics strategies to reverse breast cancer. Cells, 8, 1214.
Liang, A. L., Zhang, T. T., Zhou, N., Wu, C. Y., Lin, M. H., & Liu, Y. J. (2016). MiRNA-10b sponge: An anti-breast cancer study in vitro. Oncology Reports, 35, 1950–1958.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chauhan, S., Mathur, R. & Jha, A.K. The Impact of microRNA SNPs on Breast Cancer: Potential Biomarkers for Disease Detection. Mol Biotechnol 67, 845–861 (2025). https://doi.org/10.1007/s12033-024-01113-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12033-024-01113-w