Skip to main content

Advertisement

Log in

The Interplay Between Epilepsy and Parkinson’s Disease: Gene Expression Profiling and Functional Analysis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The results of many epidemiological studies suggest a bidirectional causality may exist between epilepsy and Parkinson’s disease (PD). However, the underlying molecular landscape linking these two diseases remains largely unknown. This study aimed to explore this possible bidirectional causality by identifying differentially expressed genes (DEGs) in each disease as well as their intersection based on two respective disease-related datasets. We performed enrichment analyses and explored immune cell infiltration based on an intersection of the DEGs. Identifying a protein–protein interaction (PPI) network between epilepsy and PD, and this network was visualised using Cytoscape software to screen key modules and hub genes. Finally, exploring the diagnostic values of the identified hub genes. NetworkAnalyst 3.0 and Cytoscape software were also used to construct and visualise the transcription factor–micro-RNA regulatory and co-regulatory networks, the gene–microRNA interaction network, as well as gene-disease association. Based on the enrichment results, the intersection of the DEGs mainly revealed enrichment in immunity-, phosphorylation-, metabolism-, and inflammation-related pathways. The boxplots revealed similar trends in infiltration of many immune cells in epilepsy and Parkinson’s disease, with greater infiltration in patients than in controls. A complex PPI network comprising 186 nodes and 512 edges were constructed. According to node connection degree, top 15 hub genes were considered the kernel targets of epilepsy and PD. The area under curve values of hub gene expression profiles confirmed their excellent diagnostic values. This study is the first to analyse the molecular landscape underlying the epidemiological link between epilepsy and Parkinson’s disease. The two diseases are closely linked through immunity-, inflammation-, and metabolism-related pathways. This information was of great help in understanding the pathogenesis, diagnosis, and treatment of the diseases. The present results may provide guidance for further in-depth analysis about molecular mechanisms of epilepsy and PD and novel potential targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The datasets generated and/or analysed during the current study are available in the GEO database (https://www.ncbi.nlm.nih.gov/geo/).

Abbreviations

AMPH:

Amphiphysin

ATP:

Adenosine triphosphate

AUC:

Area under the curve

AXIN1:

Axin 1

BP:

Biological process

CC:

Cellular Component

ChEA:

Chromatin Immunoprecipitation Enrichment Analysis

CREM:

Cyclic adenosine monophosphate responsive element modulator

DEGs:

Differentially expressed genes

DNM1:

Dynamin 1

EGR1:

Early growth response factor 1

FLI1:

Fli-1 proto-oncogene

GABA:

γ-Aminobutryic acid

GO:

Gene ontology

HIF-1:

Hypoxia-inducible factor 1

HN4FA:

Hepatocyte nuclear factor 4 alpha

IL-6:

Interleukin 6

IRF7:

Interferon regulatory factor 7

KEGG:

Kyoto Encyclopedia of Genes and Genomes

MCC:

Maximal clique centrality

MCM4:

Minimicrosome maintenance complex component 4

MCODE:

Molecular Complex Detection

miRNA:

Micro-ribonucleic acid

MF:

Molecular Function

MNC:

Maximum neighbourhood component

MRT4:

MRT4 homolog, ribosome maturation factor

MYC:

MYC proto-oncogene

NF:

Nuclear factor

PD:

Parkinson’s disease

PLCG2:

Phospholipase C gamma 2

PPI:

Protein–protein interaction

PPP2R1A:

Protein phosphatase 2 scaffold subunit A alpha

PTPN6:

Protein tyrosine phosphatase non-receptor type 6

ROC:

Receiver operating characteristic

RELA:

RELA proto-oncogene

ROC:

Receiver operating characteristic

RPS3:

Ribosomal protein S3

RPS6:

Ribosomal protein S6

SMARCA4:

Transcription activator BRG1

SMURF2:

SMAD-specific E3 ubiquitin protein ligase 2

SN:

Substantia nigra

SOFT:

Simple Omnibus Format in Text

SPI1:

Spi-1 proton-oncogene

ssGSEA:

Single-sample gene set enrichment analysis

STRING:

Search Tool for the Retrieval of Interacting Genes

SYNJ1:

Synaptojanin 1

TAL1:

T cell acute lymphoblastic lymphoma 1

TF:

Transcription factor

TLE:

Temporal lobe epilepsy

References

  1. The, L. (2019). From wonder and fear: Make epilepsy a global health priority. Lancet, 393(10172), 612.

    Article  Google Scholar 

  2. Thijs, R. D., Surges, R., O’Brien, T. J., & Sander, J. W. (2019). Epilepsy in adults. Lancet, 393(10172), 689–701.

    Article  PubMed  Google Scholar 

  3. Fisher, R. S., Acevedo, C., Arzimanoglou, A., et al. (2014). ILAE official report: A practical clinical definition of epilepsy. Epilepsia, 55(4), 475–482.

    Article  PubMed  Google Scholar 

  4. Chen, Z., Liew, D., & Kwan, P. (2016). Excess mortality and hospitalized morbidity in newly treated epilepsy patients. Neurology, 87(7), 718–725.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Saxena, S., & Li, S. (2017). Defeating epilepsy: A global public health commitment. Epilepsia Open., 2(2), 153–155.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Connolly, B. S., & Lang, A. E. (2014). Pharmacological treatment of Parkinson disease: A review. JAMA, 311(16), 1670–1683.

    Article  PubMed  Google Scholar 

  7. Kalia, L. V., & Lang, A. E. (2015). Parkinson’s disease. Lancet, 386(9996), 896–912.

    Article  CAS  PubMed  Google Scholar 

  8. Dong-Chen, X., Yong, C., Yang, X., Chen-Yu, S., & Li-Hua, P. (2023). Signaling pathways in Parkinson’s disease: Molecular mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 8(1), 73.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Gruntz, K., Bloechliger, M., Becker, C., et al. (2018). Parkinson disease and the risk of epileptic seizures. Annals of Neurology., 83(2), 363–374.

    Article  PubMed  Google Scholar 

  10. Yu, C., Deng, X. J., & Xu, D. (2023). Gene mutations in comorbidity of epilepsy and arrhythmia. Journal of neurology., 270(3), 1229–1248.

    Article  CAS  PubMed  Google Scholar 

  11. Gao, H., Li, J., Li, Q., & Lin, Y. (2023). Identification of hub genes significantly linked to subarachnoid hemorrhage and epilepsy via bioinformatics analysis. Frontiers in Neurology, 14, 1061860.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Shen, Z., Pu, S., Cao, X., et al. (2023). Bioinformatics and network pharmacology analysis of drug targets and mechanisms related to the comorbidity of epilepsy and migraine. Epilepsy Research, 189, 107066.

    Article  CAS  PubMed  Google Scholar 

  13. Bartl, M., Dakna, M., Galasko, D., et al. (2021). Biomarkers of neurodegeneration and glial activation validated in Alzheimer’s disease assessed in longitudinal cerebrospinal fluid samples of Parkinson’s disease. PLoS ONE, 16(10), e0257372.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wang, X., Shi, N., Wu, B., et al. (2022). Bioinformatics analysis of gene expression profile and functional analysis in periodontitis and Parkinson’s disease. Frontiers in Aging Neuroscience., 14, 1.

    Article  Google Scholar 

  15. Hu, S., Li, S., Ning, W., et al. (2022). Identifying crosstalk genetic biomarkers linking a neurodegenerative disease, Parkinson’s disease, and periodontitis using integrated bioinformatics analyses. Front Aging Neurosci., 14, 1032401.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Mukherjee, S. (2021). Immune gene network of neurological diseases: Multiple sclerosis (MS), Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease (HD). Heliyon., 7(12), e08518.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Zhao, S., Chi, H., Yang, Q., et al. (2023). Identification and validation of neurotrophic factor-related gene signatures in glioblastoma and Parkinson’s disease. Frontiers in Immunology, 14, 1090040.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gaitatzis, A., Carroll, K., & Majeed, A. (2004). The epidemiology of the comorbidity of epilepsy in the general population. Epilepsia, 45(12), 1613–1622.

    Article  PubMed  Google Scholar 

  19. Bergantin, L. B. (2021). The interplay among epilepsy, Parkinson’s disease and inflammation: revisiting the link through Ca(2+)/cAMP signalling. Current Neurovascular Research., 18(1), 162–168.

    Article  CAS  PubMed  Google Scholar 

  20. Feddersen, B., Remi, J., Einhellig, M., Stoyke, C., Krauss, P., & Noachtar, S. (2014). Parkinson’s disease: Less epileptic seizures, more status epilepticus. Epilepsy Research, 108(2), 349–354.

    Article  PubMed  Google Scholar 

  21. Vercueil, L. (2000). Parkinsonism and epilepsy: Case report and reappraisal of an old question. Epilepsy & Behavior: E&B., 1(2), 128–130.

    Article  Google Scholar 

  22. Yakovlev, P. I. (1928). Epilepsy and Parkinsonism. The New England Journal of Medicine, 198(12), 629–638.

    Article  Google Scholar 

  23. Szklarczyk, D., Gable, A. L., Lyon, D., et al. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613.

    Article  CAS  PubMed  Google Scholar 

  24. Shannon, P., Markiel, A., Ozier, O., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zhou, G., Soufan, O., Ewald, J., Hancock, R. E. W., Basu, N., & Xia, J. (2019). NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Research, 47(1), 234–241.

    Article  Google Scholar 

  26. Lesnick, T. G., Papapetropoulos, S., Mash, D. C., et al. (2007). A genomic pathway approach to a complex disease: Axon guidance and Parkinson disease. PLoS Genetics, 3(6), e98.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Zheng, B., Liao, Z., Locascio, J. J., et al. (2010). PGC-1alpha, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med., 2(52), 52–73.

    Article  Google Scholar 

  28. Boer, K., Crino, P. B., Gorter, J. A., et al. (2010). Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors. Brain Pathology, 20(4), 704–719.

    Article  CAS  PubMed  Google Scholar 

  29. Ritchie, M. E., Phipson, B., Wu, D., et al. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Yu, G., Wang, L. G., Han, Y., & He, Q. Y. (2012). clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology, 16(5), 284–287.

    Article  CAS  PubMed  Google Scholar 

  31. Hanzelmann, S., Castelo, R., & Guinney, J. (2013). GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics, 14, 7.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Gu, Z., Gu, L., Eils, R., Schlesner, M., & Brors, B. (2014). circlize Implements and enhances circular visualization in R. Bioinformatics, 30(19), 2811–2812.

    Article  CAS  PubMed  Google Scholar 

  33. Robin, X., Turck, N., Hainard, A., et al. (2011). pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12, 77.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Neri, S., Mastroianni, G., Gardella, E., Aguglia, U., & Rubboli, G. (2022). Epilepsy in neurodegenerative diseases. Epileptic Disorders, 24(2), 249–273.

    Article  PubMed  Google Scholar 

  35. Li, H., Yang, Y., Hu, M., et al. (2022). The correlation of temporal changes of neutrophil-lymphocyte ratio with seizure severity and the following seizure tendency in patients with epilepsy. Frontiers in Neurology., 13, 1.

    ADS  Google Scholar 

  36. Morkavuk, G., Koc, G., & Leventoglu, A. (2021). Is the differential diagnosis of epilepsy and psychogenic nonepileptic seizures possible by assessing the neutrophil/lymphocyte ratio? Epilepsy & Behavior, 116, 107736.

    Article  Google Scholar 

  37. Scott, K. M., Chong, Y. T., Park, S., et al. (2023). B lymphocyte responses in Parkinson’s disease and their possible significance in disease progression. Brain Communicationd, 5(2), 060.

    Google Scholar 

  38. Torrado, J. C., Husebo, B. S., Allore, H. G., et al. (2022). Digital phenotyping by wearable-driven artificial intelligence in older adults and people with Parkinson’s disease: Protocol of the mixed method, cyclic ActiveAgeing study. PLoS ONE, 17(10), e0275747.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Bas, J., Calopa, M., Mestre, M., et al. (2001). Lymphocyte populations in Parkinson’s disease and in rat models of parkinsonism. Journal of Neuroimmunology, 113(1), 146–152.

    Article  CAS  PubMed  Google Scholar 

  40. Defazio, G., Dal Toso, R., Benvegnu, D., Minozzi, M. C., Cananzi, A. R., & Leon, A. (1994). Parkinsonian serum carries complement-dependent toxicity for rat mesencephalic dopaminergic neurons in culture. Brain Research, 633(1–2), 206–212.

    Article  CAS  PubMed  Google Scholar 

  41. Rijkers, K., Majoie, H. J., Hoogland, G., Kenis, G., De Baets, M., & Vles, J. S. (2009). The role of interleukin-1 in seizures and epilepsy: A critical review. Experimental Neurology, 216(2), 258–271.

    Article  CAS  PubMed  Google Scholar 

  42. Rana, A., & Musto, A. E. (2018). The role of inflammation in the development of epilepsy. Journal of Neuroinflammation., 15, 1.

    Article  Google Scholar 

  43. Alyu, F., & Dikmen, M. (2017). Inflammatory aspects of epileptogenesis: Contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr., 29(1), 1–16.

    Article  PubMed  Google Scholar 

  44. Li, R., Ma, L., Huang, H., et al. (2017). Altered expression of cxcl13 and cxcr5 in intractable temporal lobe epilepsy patients and pilocarpine-induced epileptic rats. Neurochemical Research, 42(2), 526–540.

    Article  CAS  PubMed  Google Scholar 

  45. Erta, M., Quintana, A., & Hidalgo, J. (2012). Interleukin-6, a major cytokine in the central nervous system. International Journal of Biological Sciences, 8(9), 1254–1266.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Levin, S. G., & Godukhin, O. V. (2017). Modulating effect of cytokines on mechanisms of synaptic plasticity in the brain. Biochemistry (Moscow)., 82(3), 264–274.

    Article  CAS  PubMed  Google Scholar 

  47. Kwiatek-Majkusiak, J., Geremek, M., Koziorowski, D., Tomasiuk, R., Szlufik, S., & Friedman, A. (2020). Serum levels of hepcidin and interleukin 6 in Parkinson’s disease. Acta Neurobiologiae Experimentalis, 80, 297304.

    Article  Google Scholar 

  48. Karpenko, M. N., Vasilishina, A. A., Gromova, E. A., Muruzheva, Z. M., Miliukhina, I. V., & Bernadotte, A. (2018). Interleukin-1beta, interleukin-1 receptor antagonist, interleukin-6, interleukin-10, and tumor necrosis factor-alpha levels in CSF and serum in relation to the clinical diversity of Parkinson’s disease. Cellular Immunology, 327, 77–82.

    Article  CAS  PubMed  Google Scholar 

  49. Scalzo, P., Kummer, A., Cardoso, F., & Teixeira, A. L. (2010). Serum levels of interleukin-6 are elevated in patients with Parkinson’s disease and correlate with physical performance. Neuroscience Letters, 468(1), 56–58.

    Article  CAS  PubMed  Google Scholar 

  50. Hofmann, K. W., Schuh, A. F., Saute, J., et al. (2009). Interleukin-6 serum levels in patients with Parkinson’s disease. Neurochemical Research, 34(8), 1401–1404.

    Article  CAS  PubMed  Google Scholar 

  51. Zahra, W., Rai, S. N., Birla, H., et al. (2020). Neuroprotection of rotenone-induced parkinsonism by ursolic acid in PD mouse model. CNS & Neurological Disorders: Drug Targets, 19(7), 527–540.

    Article  CAS  Google Scholar 

  52. Ahmadi Rastegar, D., Ho, N., Halliday, G. M., & Dzamko, N. (2019). Parkinson’s progression prediction using machine learning and serum cytokines. NPJ Parkinsons Dis., 5, 14.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Bok, E., Cho, E. J., Chung, E. S., Shin, W. H., & Jin, B. K. (2018). Interleukin-4 contributes to degeneration of dopamine neurons in the lipopolysaccharide-treated substantia nigra in vivo. Exp Neurobiol., 27(4), 309–319.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Gupta, V., Garg, R. K., & Khattri, S. (2016). Levels of IL-8 and TNF-alpha decrease in Parkinson’s disease. Neurological Research, 38(2), 98–102.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, X., Shao, Z., Xu, S., et al. (2021). Immune profiling of Parkinson’s disease revealed its association with a subset of infiltrating cells and signature genes. Front Aging Neurosci., 13, 605970.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Kempuraj, D., Selvakumar, G. P., Zaheer, S., et al. (2018). Cross-talk between glia, neurons and mast cells in neuroinflammation associated with Parkinson’s disease. Journal of Neuroimmune Pharmacology, 13(1), 100–112.

    Article  PubMed  Google Scholar 

  57. Xu, D., Robinson, A. P., Ishii, T., et al. (2018). Peripherally derived T regulatory and gammadelta T cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. Journal of Experimental Medicine, 215(4), 1169–1186.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Hou, Y., Chen, Z., Wang, L., et al. (2022). Characterization of immune-related genes and immune infiltration features in epilepsy by multi-transcriptome data. Journal of Inflammation Research, 15, 2855–2876.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Kan, Y., Feng, L., Si, Y., Zhou, Z., Wang, W., & Yang, J. (2022). Pathogenesis and therapeutic targets of focal cortical dysplasia based on bioinformatics analysis. Neurochemical Research, 47(11), 3506–3521.

    Article  CAS  PubMed  Google Scholar 

  60. Sun, F.-J., Zhang, C.-Q., Chen, X., et al. (2016). Downregulation of CD47 and CD200 in patients with focal cortical dysplasia type IIb and tuberous sclerosis complex. Journal of Neuroinflammation., 13, 1.

    Article  ADS  Google Scholar 

  61. Pajares, M., Rojo, A., Manda, G., Boscá, L., & Cuadrado, A. (2020). Inflammation in Parkinson’s disease: Mechanisms and therapeutic implications. Cells, 9, 7.

    Article  Google Scholar 

  62. Tufekci, K. U., Meuwissen, R., Genc, S., & Genc, K. (2012). Inflammation in Parkinson’s disease. Advances in Protein Chemistry and Structural Biology, 88, 69–132.

    Article  CAS  PubMed  Google Scholar 

  63. Vezzani, A., & Granata, T. (2005). Brain inflammation in epilepsy: Experimental and clinical evidence. Epilepsia, 46(11), 1724–1743.

    Article  CAS  PubMed  Google Scholar 

  64. Stojkovska, I., Wagner, B. M., & Morrison, B. E. (2015). Parkinson’s disease and enhanced inflammatory response. Experimental Biology and Medicine (Maywood, N.J.), 240(11), 1387–1395.

    Article  CAS  PubMed  Google Scholar 

  65. Riazi, K., Galic, M. A., & Pittman, Q. J. (2010). Contributions of peripheral inflammation to seizure susceptibility: Cytokines and brain excitability. Epilepsy Research., 89(1), 34–42.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, Q., Lenardo, M. J., & Baltimore, D. (2017). 30 Years of NF-kappaB: A Blossoming of relevance to human pathobiology. Cell, 168(1–2), 37–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Chen, J., Sun, R., Jin, D., et al. (2022). Identification of adipocytokine pathway-related genes in epilepsy and its effect on the peripheral immune landscape. Brain Sciences, 12, 9.

    Article  CAS  Google Scholar 

  68. Mercado-Gomez, O. F., Cordova-Davalos, L., Garcia-Betanzo, D., et al. (2018). Overexpression of inflammatory-related and nitric oxide synthase genes in olfactory bulbs from frontal lobe epilepsy patients. Epilepsy Research, 148, 37–43.

    Article  CAS  PubMed  Google Scholar 

  69. Jian, X., Zhao, G., Chen, H., et al. (2022). Revealing a novel contributing landscape of ferroptosis-related genes in Parkinson’s disease. Computational and Structural Biotechnology Journal, 20, 5218–5225.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Kleppner, S. R., & Tobin, A. J. (2001). GABA signalling: Therapeutic targets for epilepsy, Parkinson’s disease and Huntington’s disease. Expert opinion on therapeutic targets., 5(2), 219–239.

    Article  CAS  PubMed  Google Scholar 

  71. Kaufman, D. L., Houser, C. R., & Tobin, A. J. (1991). Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. Journal of Neurochemistry, 56(2), 720–723.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Prof. Guoguang Zhao, for critically editing the current manuscript.

Funding

This research was supported by the National Natural Science Foundation of China (82030037), the STI2030-Major Projects (2021ZD0201801), the Beijing Municipal Science & Technology Commission (Z221100007422016, Z221100002722007), the Translational and Application Project of Brain-inspired and Network Neuroscience on Brain Disorders, Beijing Municipal Health Commission (11000023T000002036286), the Beijing Municipal Health Commission (2022-1-8011, 2022-2-2011), the Ministry of Science and Technology of China (2022YFC2405302), the Beijing Natural Science Foundation (L222107), the National Natural Science Foundation of China (82201605).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation: XW; Data Collection, XW, YH, WS; Methodology, XW, KW, JW, PW, HZ, YY, YW; Writing, XW; Review and editing: GZ, YS, PW. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Guoguang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

This study was conducted in silico based on the analysis of data obtained from online databases and no laboratory studies were conducted on humans or animals.

Consent for Publication

All authors have read and agreed to the published version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wang, K., Wang, J. et al. The Interplay Between Epilepsy and Parkinson’s Disease: Gene Expression Profiling and Functional Analysis. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01103-y

Keywords

Navigation