Skip to main content
Log in

Comprehensive Analysis of the Complete Chloroplast Genome of Cinnamomum daphnoides (Lauraceae), An Endangered Island Endemic Plant

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Cinnamomum daphnoides (Siebold & Zucc 1846) is a rare and endangered island species with a unique Sino-Japanese distribution pattern. However, inormation regarding the species’ chloroplast (cp) genome, structural features, and the phylogenetic relationship is still lacking. We utilized high-throughput sequencing technology to assemble and annotate the first cp genome of C. daphnoides (GenBank OR654104), followed by genomic characterization and phylogenetic analysis to fill the gaps in this species’ cp genome. Our analysis showed that the cp genome has a quadripartite structure spanning 152,765 bp with a GC content of 39.15%. The genome encodes 126 genes, which include 36 tRNA genes, 8 rRNA genes, and 82 mRNA genes. Specifically, 44 genes are related to photosynthesis, 59 are associated with self-replication, six are other genes, and four have unknown functionality. The Codon usage bias in the genome exhibits a preference for A/U bases. We identified 29 interspaced repeat sequences that belonging to three types of repeat sequences. A total of 217 cpSSR loci were detected with single nucleotide repeats (59.91%) being the most frequent loci, mainly composed of A/T repeats. Our selection pressure analysis revealed that the ycf2 gene experienced strong positive selection (Ka/Ks = 1.81, P > 0.844). Further, we identified three highly variable fragments (psbM, psbT, and ycf1) that can be utilized as specific DNA barcoding markers for species definition and population genetic studies. We conducted boundary analysis, which showed that the structure and gene sequence of the two species were highly conserved. Finally, our phylogenetic analysis supports that C. daphnoides is close to C. cassia in the Cinnamomum genes, indicating that the two species share a common ancestry. Overall, providing genomic information on C. daphnoides will be beneficial for the conservation and utilization of endangered plant genetic resources. It will also serve as a reference for the identification of species and the phylogenetic analysis of Cinnamomum. This information will be useful in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov under accession no. OR654104.

References

  1. Nitta, I., & Ohsawa, M. (2001). Geographical transition of sylleptic/proleptic branching in three Cinnamomum species with different bud types. Annals of Botany, 87(1), 35–45.

    Article  Google Scholar 

  2. Akiyama, S., Thijsse, G., Esser, H. J., & Ohba, H. (2014). Siebold and Zuccarini’s type specimens and original materials from Japan, Part 3. Angiosperms. Dicotyledoneae 2. Journal of Japanese Botany, 89(2), 76–102.

    Google Scholar 

  3. Kakishima, M., Ji, J. X., Nagao, H., Wang, Q., & Denchev, C. M. (2017). Clinoconidium globosum, nom. Nov. (Cryptobasidiaceae) producing galls on shoot buds of Cinnamomum tenuifolium in Japan. Phytotaxa, 299(2), 267–272.

    Article  Google Scholar 

  4. Zhang, Y. F., Li, X. P., Chen, Z. H., Zhu, Z. X., Zhang, F. Y., Ma, D. D., & Li, G. Y. (2014). A newly recorded species of Lauraceae from China: Cinnamomum daphnoides Sieb et Zucc. Journal of Tropical and Subtropical Botany, 22(5), 453–455. (in Chinese with English abstract).

    Google Scholar 

  5. Fujita, Y., Fujita, S. I., & Yoshikawa, H. (1970). Biogenesis of the essential oils in camphor trees-26-on the components of the essential oil of Cinnamomum daphnoides Sieb, et Zucc. Bulletin of the Chemical Society of Japan, 43(8), 2630–2631.

    Article  CAS  Google Scholar 

  6. Neuhaus, H. E., & Emes, M. J. (2000). Nonphotosynthetic metabolism in plastids. Annual Review of Plant Biology, 51(1), 111–140.

    Article  CAS  Google Scholar 

  7. Olejniczak, S. A., Łojewska, E., Kowalczyk, T., & Sakowicz, T. (2016). Chloroplasts: State of research and practical applications of plastome sequencing. Planta, 244, 517–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, X., Li, Y., Zang, M., Li, M., & Fang, Y. (2018). Complete chloroplast genome sequence and phylogenetic analysis of Quercus acutissima. International Journal of Molecular Sciences, 19(8), 1–17.

    Article  CAS  Google Scholar 

  9. Li, Y., Sylveter, S. P., Li, M., Zhang, C., Li, X., Duan, Y., & Wang, X. (2019). The complete plastid genome of Magnolia zenii and genetic comparison to Magnoliaceae species. Molecules, 24(2), 261.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hou, Z., Wang, Z., & Zhang, J. (2020). The complete chloroplast genomic landscape and phylogenetic analyses of Populus alba L. Journal of Forestry Research, 31(5), 1875–1879.

    Article  CAS  Google Scholar 

  11. Yang, X., Zhou, T., Su, X., Wang, G., Zhang, X., Guo, Q., & Cao, F. (2021). Structural characterization and comparative analysis of the chloroplast genome of Ginkgo biloba and other gymnosperms. Journal of Forestry Research, 32, 765–778.

    Article  CAS  Google Scholar 

  12. Wu, J., Zhang, J., Guo, X., Yu, N., Peng, D., & Xing, S. (2023). Comprehensive analysis of complete chloroplast genome sequence of Plantago asiatica L. (Plantaginaceae). Plant Signaling & Behavior, 18(1), 2163345.

    Article  Google Scholar 

  13. Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data. Available online. Retrieved May 17, 2018

  14. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Greiner, S., Lehwark, P., & Bock, R. (2019). OrganellarGenomeDRAW (OGDRAW) version 1.31: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research, 47(W1), W59–W64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sharp, P. M., Tuohy, T. M., & Mosurski, K. R. (1986). Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Research, 14(13), 5125–5143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beier, S., Thiel, T., Münch, T., Scholz, U., & Mascher, M. (2017). MISA-web: A web server for microsatellite prediction. Bioinformatics, 33(16), 2583–2585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Katoh, K., Rozewicki, J., & Yamada, K. D. (2019). MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4), 1160–1166.

    Article  CAS  PubMed  Google Scholar 

  19. Librado, P., & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451–1452.

    Article  CAS  PubMed  Google Scholar 

  20. Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, N., Chen, S., Xie, L., Wang, L., Feng, Y., Lv, T., Fang, Y., & Ding, H. (2022). The complete chloroplast genomes of three Hamamelidaceae species: Comparative and phylogenetic analyses. Ecology and Evolution, 12(2), e8637.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Smith, D. R. (2017). Does cell size impact chloroplast genome size? Frontiers in Plant Science, 8, 2116.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhao, Y., Yang, Z., Zhao, Y., Li, X., Zhao, Z., & Zhao, G. (2019). Chloroplast genome structural characteristics and phylogenetic relationships of Oleaceae. Chinese Bulletin of Botany, 54(4), 441–454. (in Chinese with English abstract).

    CAS  Google Scholar 

  24. Chen, C., Zheng, Y., Liu, S., Zhong, Y., Wu, Y., Li, J., Xu, L., & Xu, M. (2017). The complete chloroplast genome of Cinnamomum camphora and its comparison with related Lauraceae species. PeerJ, 5, e3820.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang, J. L., Sun, G. L., & Zhang, D. M. (2010). Molecular evolution and phylogeny of the angiosperm ycf2 gene. Journal of Systematics and Evolution, 48(4), 240–248.

    Article  Google Scholar 

  26. Yan, C., Du, J., Gao, L., Li, Y., & Hou, X. (2019). The complete chloroplast genome sequence of watercress (Nasturtium officinale R. Br.): Genome organization, adaptive evolution and phylogenetic relationships in Cardamineae. Gene, 699, 24–36.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, J., Su, B., Jiang, H., Cui, N., Yu, Z., Yang, Y., & Sun, Y. (2020). Traditional uses, phytochemistry and pharmacological activities of the genus Cinnamomum (Lauraceae): A review. Fitoterapia, 146, 104675.

    Article  CAS  PubMed  Google Scholar 

  28. Lin, H. Y., Yang, Y., Li, W. H., Luo, Y. X., Bai, X. H., Ohi-Toma, T., Kim, C., Kim, J. H., & Zhao, Y. P. (2023). Species boundaries and conservation implications of Cinnamomum japonicum, an endangered plant in China. Journal of Systematics and Evolution. https://doi.org/10.1111/jse.12950

    Article  Google Scholar 

  29. Doh, E. J., Kim, J. H., Oh, S. E., & Lee, G. (2017). Identification and monitoring of Korean medicines derived from Cinnamomum spp. by using ITS and DNA marker. Genes & Genomics, 39, 101–109.

    Article  CAS  Google Scholar 

  30. Liu, Z. F., Ci, X. Q., Li, L., Li, H. W., Conran, J. G., & Li, J. (2017). DNA barcoding evaluation and implications for phylogenetic relationships in Lauraceae from China. PLoS ONE, 12(4), e0175788.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang, Z., Liu, B., Yang, Y., & Ferguson, D. K. (2022). Phylogeny and taxonomy of Cinnamomum (Lauraceae). Ecology and Evolution, 12(10), e9378.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Song, Y., Chen, Y., Lv, J., Xu, J., Zhu, S., Li, M., & Chen, N. (2017). Development of chloroplast genomic resources for Oryza species discrimination. Frontiers in Plant Science, 8, 1854.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chanderbali, A. S., Van Der Werff, H., & Renner, S. S. (2001). Phylogeny and historical biogeography of Lauraceae: Evidence from the chloroplast and nuclear genomes. Annals of the Missouri Botanical Garden, 88, 104–134.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for comments and suggestions from two anonymous reviewers who helped improve the original manuscript.

Funding

This study was funded by the Zhejiang Provincial Scientific Research Institution special project (Grant Nos. 2022F1068-3 and 2021F1065-6), and the “Pioneer” and “Leading Goose” R&D Program of Zhejiang (2022C02038).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by HZ. The first draft of the manuscript was written by HZ, and HL commented on previous versions of the manuscript and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hong Zhu.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Ethical Approval

This article does not contain any studies with animals performed by any of the authors. The plant materials used in this study were collected from the arboretum of Zhejiang Academy of Forestry, and the collection process was in accordance with the regulations of the academy and relevant local laws and regulations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Li, H. Comprehensive Analysis of the Complete Chloroplast Genome of Cinnamomum daphnoides (Lauraceae), An Endangered Island Endemic Plant. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00950-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00950-5

Keywords

Navigation