Skip to main content

Advertisement

Log in

Functional Mutations in the microRNA-155 Promoter Modulate its Transcription Efficiency and Expression

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Limited research has been conducted on porcine miR-155 promoters, and previous study from our group have identified two haplotypes (TT and CC) in different pig breeds, each associated with five fully linked mutation sites within or near the miR-155 gene (Li et al. Dev Comp Immunol 39(1):110–116, 2013). In this study, the promoter region of porcine miR-155 was screened, and two important transcription factors, Foxp3 and RelA, were identified. The binding ability of Foxp3 protein was found to be affected by the first mutation site (A/C) using EMSA analysis. In vitro experiments revealed that the expression level of miR-155 was significantly higher in the C haplotype compared to the T haplotype. Additionally, northern blotting assays indicated that both the first mutation site (A/C) and the fourth mutation site (G/T) had a significant impact on miR-155 expression levels. These findings provide further insights into the transcriptional regulation of porcine miR-155 and identify crucial mutation sites that influence miR-155 expression. This knowledge can serve as a basis for identifying potential molecular markers associated with disease resistance in swine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors declare that the main data supporting the findings of this study are available within the manuscript.

References

  1. Li, C., He, H., Zhu, M., Zhao, S., & Li, X. (2013). Molecular characterisation of porcine miR-155 and its regulatory roles in the TLR3/TLR4 pathways. Developmental and Comparative Immunology, 39(1), 110–116.

    Article  PubMed  Google Scholar 

  2. Sun, G., Yan, J., Noltner, K., Feng, J., Li, H., Sarkis, D. A., Sommer, S. S., & Rossi, J. J. (2009). SNPs in human miRNA genes affect biogenesis and function. RNA, 15(9), 1640–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saunders, M. A., Liang, H., & Li, W. H. (2007). Human polymorphism at microRNAs and microRNA target sites. Proceedings of the National Academy of Sciences USA, 104(9), 3300–3305.

    Article  CAS  Google Scholar 

  4. Yu, Z., Li, Z., Jolicoeur, N., Zhang, L., Fortin, Y., Wang, E., Wu, M., & Shen, S. H. (2007). Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers. Nucleic Acids Research, 35(13), 4535–4541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Landi, D., Gemignani, F., Naccarati, A., Pardini, B., Vodicka, P., Vodickova, L., Novotny, J., Forsti, A., Hemminki, K., Canzian, F., et al. (2008). Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis, 29(3), 579–584.

    Article  CAS  PubMed  Google Scholar 

  6. Duan, R., Pak, C., & Jin, P. (2007). Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Human Molecular Genetics, 16(9), 1124–1131.

    Article  CAS  PubMed  Google Scholar 

  7. Qi, L., Hu, Y., Zhan, Y., Wang, J., Wang, B. B., Xia, H. F., & Ma, X. (2012). A SNP site in pri-miR-124 changes mature miR-124 expression but no contribution to Alzheimer’s disease in a Mongolian population. Neuroscience Letters, 515(1), 1–6.

    Article  CAS  PubMed  Google Scholar 

  8. Clop, A., Marcq, F., Takeda, H., Pirottin, D., Tordoir, X., Bibe, B., Bouix, J., Caiment, F., Elsen, J. M., Eychenne, F., et al. (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics, 38(1), 813–818.

    Article  CAS  PubMed  Google Scholar 

  9. Cargill, E. J., Nissing, N. J., & Grosz, M. D. (2008). Single nucleotide polymorphisms concordant with the horned/polled trait in Holsteins. BMC Research Notes, 1, 128.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lei, B., Gao, S., Luo, L. F., Xia, X. Y., Jiang, S. W., Deng, C. Y., Xiong, Y. Z., & Li, F. E. (2011). A SNP in the miR-27a gene is associated with litter size in pigs. Molecular Biology Reports, 38(6), 3725–3729.

    Article  CAS  PubMed  Google Scholar 

  11. Kim, J. M., Lim, K. S., Hong, J. S., Kang, J. H., Lee, Y. S., & Hong, K. C. (2015). A polymorphism in the porcine miR-208b is associated with microRNA biogenesis and expressions of SOX-6 and MYH7 with effects on muscle fibre characteristics and meat quality. Animal Genetics, 46(1), 73–77.

    Article  CAS  PubMed  Google Scholar 

  12. Wang, S. H., Wang, S. H., Li, H., Sun, G. R., Lyu, S. J., Liu, X. J., Li, Z. J., & Kang, X. T. (2015). SNP in pre-miR-1666 decreases mature miRNA expression and is associated with chicken performance. Genome, 58(2), 81–90.

    Article  CAS  PubMed  Google Scholar 

  13. Chai, J., Chen, L., Luo, Z., Zhang, T., Chen, L., Lou, P., Sun, W., Long, X., Lan, J., Wang, J., et al. (2018). Spontaneous single nucleotide polymorphism in porcine microRNA-378 seed region leads to functional alteration. Bioscience, Biotechnology, and Biochemistry, 82(7), 1081–1089.

    Article  CAS  PubMed  Google Scholar 

  14. Tam, W. (2001). Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA. Gene, 274(1–2), 157–167.

    Article  CAS  PubMed  Google Scholar 

  15. Elton, T. S., Selemon, H., Elton, S. M., & Parinandi, N. L. (2013). Regulation of the MIR155 host gene in physiological and pathological processes. Gene, 532(1), 1–12.

    Article  CAS  PubMed  Google Scholar 

  16. Yin, Q., Wang, X., McBride, J., Fewell, C., & Flemington, E. (2008). B-cell receptor activation induces BIC/miR-155 expression through a conserved AP-1 element. The Journal of biological chemistry, 283(5), 2654–2662.

    Article  CAS  PubMed  Google Scholar 

  17. Gatto, G., Rossi, A., Rossi, D., Kroening, S., Bonatti, S., & Mallardo, M. (2008). Epstein-Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-kappaB pathway. Nucleic Acids Research, 36(20), 6608–6619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gerloff, D., Grundler, R., Wurm, A. A., Brauer-Hartmann, D., Katzerke, C., Hartmann, J. U., Madan, V., Muller-Tidow, C., Duyster, J., Tenen, D. G., et al. (2015). NF-kappaB/STAT5/miR-155 network targets PU.1 in FLT3-ITD-driven acute myeloid leukemia. Leukemia, 29(3), 535–547.

    Article  CAS  PubMed  Google Scholar 

  19. Lu, L. F., Thai, T. H., Calado, D. P., Chaudhry, A., Kubo, M., Tanaka, K., Loeb, G. B., Lee, H., Yoshimura, A., Rajewsky, K., et al. (2009). Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity, 30(1), 80–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sanchez-Diaz, R., Blanco-Dominguez, R., Lasarte, S., Tsilingiri, K., Martin-Gayo, E., Linillos-Pradillo, B., de la Fuente, H., Sanchez-Madrid, F., Nakagawa, R., Toribio, M. L., et al. (2017). Thymus-derived regulatory T cell development is regulated by C-type lectin-mediated BIC/MicroRNA 155 expression. Molecular and Cellular Biology, 37(9), e00341-e416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng, Y., Josefowicz, S. Z., Kas, A., Chu, T. T., Gavin, M. A., & Rudensky, A. Y. (2007). Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature, 445(7130), 936–940.

    Article  CAS  PubMed  Google Scholar 

  22. Kohlhaas, S., Garden, O. A., Scudamore, C., Turner, M., Okkenhaug, K., & Vigorito, E. (2009). Cutting edge: The Foxp3 target miR-155 contributes to the development of regulatory T cells. The Journal of Immunology, 182(5), 2578–2582.

    Article  CAS  PubMed  Google Scholar 

  23. Quinn, S. R., Mangan, N. E., Caffrey, B. E., Gantier, M. P., Williams, B. R., Hertzog, P. J., McCoy, C. E., & O’Neill, L. A. (2014). The role of Ets2 transcription factor in the induction of microRNA-155 (miR-155) by lipopolysaccharide and its targeting by interleukin-10. The Journal of Biological Chemistry, 289(7), 4316–4325.

    Article  CAS  PubMed  Google Scholar 

  24. Robertson, E. D., Wasylyk, C., Ye, T., Jung, A. C., & Wasylyk, B. (2014). The oncogenic MicroRNA Hsa-miR-155-5p targets the transcription factor ELK3 and links it to the hypoxia response. PLoS ONE, 9(11), e113050.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Genomes Project C, Auton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P., Kang, H. M., Korbel, J. O., Marchini, J. L., McCarthy, S., McVean, G. A., et al. (2015). A global reference for human genetic variation. Nature, 526(7571), 68–74.

    Article  Google Scholar 

  26. Sudmant, P. H., Rausch, T., Gardner, E. J., Handsaker, R. E., Abyzov, A., Huddleston, J., Zhang, Y., Ye, K., Jun, G., Fritz, M. H., et al. (2015). An integrated map of structural variation in 2,504 human genomes. Nature, 526(7571), 75–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, C., He, H., Liu, A., Liu, H., Huang, H., Zhao, C., Jing, L., Ni, J., Yin, L., Hu, S., et al. (2016). Natural functional SNPs in miR-155 alter its expression level, blood cell counts, and immune responses. Frontiers in Immunology, 7, 295.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang, D., Zhang, W., Guo, J., Wu, Y., Li, X., Zhao, S., & Zhu, M. (2020). Identification of functional mutations at FOXP3 binding site within BIC gene that alter the expression of miR-155 in pigs. Gene, 744, 144631.

    Article  CAS  PubMed  Google Scholar 

  29. Faraoni, I., Antonetti, F. R., Cardone, J., & Bonmassar, E. (2009). miR-155 gene: A typical multifunctional microRNA. Biochimica et Biophysica Acta, 1792(6), 497–505.

    Article  CAS  PubMed  Google Scholar 

  30. Vigorito, E., Kohlhaas, S., Lu, D., & Leyland, R. (2013). miR-155: An ancient regulator of the immune system. Immunological Reviews, 253(1), 146–157.

    Article  PubMed  Google Scholar 

  31. Jafarzadeh, A., Naseri, A., Shojaie, L., Nemati, M., Jafarzadeh, S., Bannazadeh Baghi, H., Hamblin, M. R., Akhlagh, S. A., & Mirzaei, H. (2021). MicroRNA-155 and antiviral immune responses. International Immunopharmacology, 101(pt A), 108188.

    Article  CAS  PubMed  Google Scholar 

  32. Li, J., Haiyilati, A., Zhou, L., Chen, J., Wang, Y., Gao, L., Cao, H., Li, X., & Zheng, S. J. (2022). GATA3 Inhibits viral infection by promoting MicroRNA-155 expression. Journal of Virology, 96, e0188821.

    Article  PubMed  Google Scholar 

  33. Zhao, J., Zhao, J., He, Z., Lin, M., & Huo, F. (2022). KLF4 affects acute renal allograft injury via binding to MicroRNA-155-5p promoter to regulate ERRFI1. Disease Markers, 2022, 5845627.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ayoubi, T. A., & Van De Ven, W. J. (1996). Regulation of gene expression by alternative promoters. The FASEB Journal, 10(4), 453–460.

    Article  CAS  PubMed  Google Scholar 

  35. Martianov, I., Ramadass, A., Serra Barros, A., Chow, N., & Akoulitchev, A. (2007). Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature, 445(7128), 666–670.

    Article  CAS  PubMed  Google Scholar 

  36. Masters, J. N., & Attardi, G. (1985). Discrete human dihydrofolate reductase gene transcripts present in polysomal RNA map with their 5’ ends several hundred nucleotides upstream of the main mRNA start site. Molecular and Cellular Biology, 5(3), 493–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Blume, S. W., Meng, Z., Shrestha, K., Snyder, R. C., & Emanuel, P. D. (2003). The 5’-untranslated RNA of the human dhfr minor transcript alters transcription pre-initiation complex assembly at the major (core) promoter. Journal of Cellular Biochemistry, 88(1), 165–180.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, Y., Wei, W., Cheng, N., Wang, K., Li, B., Jiang, X., & Sun, S. (2012). Hepatitis C virus-induced up-regulation of microRNA-155 promotes hepatocarcinogenesis by activating Wnt signaling. Hepatology, 56(5), 1631–1640.

    Article  CAS  PubMed  Google Scholar 

  39. Yang, X., Peng, J., Pang, J., Wan, W., & Chen, L. (2019). A functional polymorphism in the promoter region of miR-155 predicts the risk of intracranial hemorrhage caused by rupture intracranial aneurysm. Journal of Cellular Biochemistry, 120(11), 18618–18628.

    Article  CAS  PubMed  Google Scholar 

  40. Assmann, T. S., Duarte, G. C. K., Brondani, L. A., de Freitas, P. H. O., Martins, E. M., Canani, L. H., & Crispim, D. (2017). Polymorphisms in genes encoding miR-155 and miR-146a are associated with protection to type 1 diabetes mellitus. Acta Diabetologica, 54(5), 433–441.

    Article  CAS  PubMed  Google Scholar 

  41. Latini, A., Spallone, V., D’Amato, C., Novelli, G., Borgiani, P., & Ciccacci, C. (2019). A common polymorphism in MIR155 gene promoter region is associated with a lower risk to develop type 2 diabetes. Acta Diabetologica, 56(6), 717–718.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, J., Wei, B., Hu, H., Liu, F., Tu, Y., Zhao, M., & Wu, D. (2017). Preliminary study on decreasing the expression of FOXP3 with miR-155 to inhibit diffuse large B-cell lymphoma. Oncology Letters, 14(2), 1711–1718.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hu, Z., Chen, J., Tian, T., Zhou, X., Gu, H., Xu, L., Zeng, Y., Miao, R., Jin, G., Ma, H., et al. (2008). Genetic variants of miRNA sequences and non-small cell lung cancer survival. The Journal of Clinical Investigation, 118(7), 2600–2608.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation Youth Fund of China (Grant number 31702102).

Author information

Authors and Affiliations

Authors

Contributions

CL conceived and designed the study. CL and WZ processed the vector construction, while CL, YH, and WZ performed the cell culture, transfection, and luciferase assays. CL, JW, KL, and HZ performed the western blotting analysis, while EMSA. CL, DJ, XJ, and HZ performed northern blotting. CL, WL, and QX wrote the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Congcong Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest to be declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12033_2023_857_MOESM1_ESM.rar

Supplementary figure1. No luciferase activity was detected in PK-15 cells transfected with pGL3-bicpro1 or pGL3-bicQ1/Q2/Q3 constructs. A pRL-TK vector that provided constitutive expression of Renilla luciferase was co-transfected as an internal control. The results are presented as mean±SEM (n=3). Supplementary table 1. Primers used for plasmid construction in this study. Supplementary table 2. Probes used for EMSA assay. Supplementary table 3. Probes used for Northern blot. (RAR 301 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhao, W., Zhou, H. et al. Functional Mutations in the microRNA-155 Promoter Modulate its Transcription Efficiency and Expression. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00857-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00857-1

Keywords

Navigation