Skip to main content

Advertisement

Log in

MicroRNA-483-3p Inhibitor Ameliorates Sepsis-Induced Intestinal Injury by Attenuating Cell Apoptosis and Cytotoxicity Via Regulating HIPK2

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Sepsis is a life-threatening syndrome that can result in multi-organ dysfunction. MicroRNA (miR)-483-3p was previously demonstrated to be upregulated in sepsis patients; however, its specific functions in sepsis-triggered intestinal injury remain unclarified. Human intestinal epithelial NCM460 cell line was stimulated with lipopolysaccharide (LPS) to mimic sepsis-induced intestinal injury in vitro. Terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) staining was utilized for examining cell apoptosis. Western blotting and real time quantitative polymerase chain reaction (RT-qPCR) were used for detecting molecular protein and RNA levels. LPS-induced cytotoxicity was determined by measuring concentrations of lactate dehydrogenase (LDH), diamine oxidase (DAO) and fatty acid binding protein 2 (FABP2). Luciferase reporter assay was utilized for verifying the interaction between miR-483-3p and homeodomain interacting protein kinase 2 (HIPK2). Inhibiting miR-483-3p alleviates LPS-triggered NCM460 cell apoptosis and cytotoxicity. miR-483-3p targeted HIPK2 in LPS-stimulated NCM460 cells. Knockdown of HIPK2 reversed the above effects mediated by miR-483-3p inhibitor. Inhibiting miR-483-3p ameliorates LPS-triggered apoptosis and cytotoxicity by targeting HIPK2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G. R., Chiche, J. D., Coopersmith, C. M., Hotchkiss, R. S., Levy, M. M., Marshall, J. C., Martin, G. S., Opal, S. M., Rubenfeld, G. D., van der Poll, T., Vincent, J. L., & Angus, D. C. (2016). The Third International consensus definitions for sepsis and septic shock (Sepsis-3). Jama, 315, 801–810.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Rudd, K. E., Johnson, S. C., Agesa, K. M., Shackelford, K. A., Tsoi, D., Kievlan, D. R., Colombara, D. V., Ikuta, K. S., Kissoon, N., Finfer, S., Fleischmann-Struzek, C., Machado, F. R., Reinhart, K. K., Rowan, K., Seymour, C. W., Watson, R. S., West, T. E., Marinho, F., Hay, S. I., … Naghavi, M. (2020). Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global burden of disease study. Lancet, 395, 200–211.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang, Y. Y., & Ning, B. T. (2021). Signaling pathways and intervention therapies in sepsis. Signal Transduction and Targeted Therapy, 6, 407.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rello, J., Valenzuela-Sánchez, F., Ruiz-Rodriguez, M., & Moyano, S. (2017). Sepsis: A Review of Advances in Management. Advances in Therapy, 34, 2393–2411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Fay, K. T., Ford, M. L., & Coopersmith, C. M. (2017). The intestinal microenvironment in sepsis. Biochimica et Biophysica Acta, Molecular Basis of Disease, 1863, 2574–2583.

    Article  PubMed  CAS  Google Scholar 

  6. Zhu, Y., Wang, Y., Teng, W., Shan, Y., Yi, S., Zhu, S., & Li, Y. (2019). Role of Aquaporin-3 in intestinal injury induced by sepsis. Biological and Pharmaceutical Bulletin, 42, 1641–1650.

    Article  PubMed  CAS  Google Scholar 

  7. Wang, Y. F., Li, J. W., Wang, D. P., Jin, K., Hui, J. J., & Xu, H. Y. (2022). Anti-hyperglycemic agents in the adjuvant treatment of sepsis: Improving intestinal barrier function. Drug Design, Development and Therapy, 16, 1697–1711.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lu, T. X., & Rothenberg, M. E. (2018). MicroRNA. The Journal of Allergy and Clinical Immunology, 141, 1202–1207.

    Article  PubMed  CAS  Google Scholar 

  9. Harrill, A. H., McCullough, S. D., Wood, C. E., Kahle, J. J., & Chorley, B. N. (2016). MicroRNA biomarkers of toxicity in biological matrices. Toxicological Sciences, 152, 264–272.

    Article  PubMed  CAS  Google Scholar 

  10. Zhou, S. S., Jin, J. P., Wang, J. Q., Zhang, Z. G., Freedman, J. H., Zheng, Y., & Cai, L. (2018). miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacologica Sinica, 39, 1073–1084.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Yu, J., Xue, J., Liu, C., Zhang, A., Qin, L., Liu, J., & Yang, Y. (2022). MiR-146a-5p accelerates sepsis through dendritic cell activation and glycolysis via targeting ATG7. Journal of Biochemical and Molecular Toxicology, 36, e23151.

    Article  PubMed  CAS  Google Scholar 

  12. Du, X., Tian, D., Wei, J., Yan, C., Hu, P., Wu, X., Yang, W., & Zhu, Z. (2020). miR-199a-5p exacerbated intestinal barrier dysfunction through inhibiting surfactant protein D and activating NF-κB pathway in sepsis. Mediators of Inflammation, 2020, 8275026.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Qiu, G., Fan, J., Zheng, G., He, J., Lin, F., Ge, M., Huang, L., Wang, J., Xia, J., Huang, R., Shu, Q., & Xu, J. (2022). Diagnostic potential of plasma extracellular vesicle miR-483-3p and Let-7d-3p for sepsis. Frontiers Molecular Bioscience, 9, 814240.

    Article  CAS  Google Scholar 

  14. Yuan, T., Zhang, L., Yao, S., Deng, S. Y., & Liu, J. Q. (2020). miR-195 promotes LPS-mediated intestinal epithelial cell apoptosis via targeting SIRT1/eIF2a. International Journal of Molecular Medicine, 45, 510–518.

    PubMed  CAS  Google Scholar 

  15. Li, J. H., Liu, S., Zhou, H., Qu, L. H., & Yang, J. H. (2014). starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Research, 42, D92–D97.

    Article  PubMed  CAS  Google Scholar 

  16. Pérez-Hernández, E. G., Delgado-Coello, B., Luna-Reyes, I., & Mas-Oliva, J. (2021). New insights into lipopolysaccharide inactivation mechanisms in sepsis. Biomedicine & Pharmacotherapy, 141, 111890.

    Article  Google Scholar 

  17. Gu, J., Hu, J., Qian, H., Shi, Y., Zhang, E., Guo, Y., Xiao, Z., Fang, Z., Zhong, M., Zhang, H., & Meng, W. (2016). Intestinal barrier dysfunction: A novel therapeutic target for inflammatory response in acute stanford type a aortic dissection. Journal of Cardiovascular Pharmacology and Therapeutics, 21, 64–69.

    Article  PubMed  CAS  Google Scholar 

  18. Wang, M., Guo, S., Zhang, Y., Zhang, Y., & Zhang, H. (2021). Remifentanil attenuates sepsis-induced intestinal injury by inducing autophagy. Bioengineered, 12, 9575–9584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kuang, Z. S., Leng, Y. X., Yang, N., Li, Z. Q., Zong, Y. N., Han, D. Y., Li, Y., He, J. D., Mi, X. N., Cong, Z. K., Zhu, X., Wu, C. Y., & Guo, X. Y. (2022). Inhibition of visfatin alleviates sepsis-induced intestinal damage by inhibiting Hippo signaling pathway. Inflammation Research, 71, 911–922.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Tan, F., Cao, Y., Zheng, L., Wang, T., Zhao, S., Chen, J., Pang, C., Xia, W., Xia, Z., Li, N., & Chi, X. (2022). Diabetes exacerbated sepsis-induced intestinal injury by promoting M1 macrophage polarization via miR-3061/Snail1 signaling. Frontiers Immunology, 13, 922614.

    Article  CAS  Google Scholar 

  21. Li, Z., Gao, M., Yang, B., Zhang, H., Wang, K., Liu, Z., Xiao, X., & Yang, M. (2018). Naringin attenuates MLC phosphorylation and NF-κB activation to protect sepsis-induced intestinal injury via RhoA/ROCK pathway. Biomedicine & Pharmacotherapy, 103, 50–58.

    Article  CAS  Google Scholar 

  22. Formosa, A., Turgeon, P., & Dos Santos, C. C. (2022). Role of miRNA dysregulation in sepsis. Molecular Medicine, 28, 99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Du, X., Tian, D., Wei, J., Yan, C., Hu, P., Wu, X., & Yang, W. (2020). MEG3 alleviated LPS-induced intestinal injury in sepsis by modulating miR-129-5p and surfactant protein D. Mediators Inflammation, 2020, 8232734.

    Article  Google Scholar 

  24. Wang, Z., Zhong, C., Cao, Y., Yin, H., Shen, G., Lu, W., & Ding, W. (2021). LncRNA DANCR improves the dysfunction of the intestinal barrier and alleviates epithelial injury by targeting the miR-1306-5p/PLK1 axis in sepsis. Cell Biology International, 45, 1935–1944.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang, H., Wang, J., Du, A., & Li, Y. (2020). MiR-483-3p inhibition ameliorates myocardial ischemia/reperfusion injury by targeting the MDM4/p53 pathway. Molecular Immunology, 125, 9–14.

    Article  PubMed  CAS  Google Scholar 

  26. Zhou, J., Lin, J., Zhao, Y., & Sun, X. (2022). Deregulated expression of miR-483-3p serves as a diagnostic biomarker in severe pneumonia children with respiratory failure and its predictive value for the clinical outcome of patients. Molecular Biotechnology, 64, 311–319.

    Article  PubMed  CAS  Google Scholar 

  27. Huang, X., Zhou, Y., Sun, Y., & Wang, Q. (2022). Intestinal fatty acid binding protein: A rising therapeutic target in lipid metabolism. Progress in Lipid Research, 87, 101178.

    Article  PubMed  CAS  Google Scholar 

  28. Dang, S., Shen, Y., Yin, K., & Zhang, J. (2012). TREM-1 Promotes Pancreatitis-Associated Intestinal Barrier Dysfunction. Gastroenterol Res Pract., 2012, 720865.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chipman, L. B., & Pasquinelli, A. E. (2019). miRNA Targeting: Growing beyond the Seed. Trends in Genetics, 35, 215–222.

    Article  PubMed  CAS  Google Scholar 

  30. Wang, Y., Hou, L., Yuan, X., Xu, N., Zhao, S., Yang, L., & Zhang, N. (2020). miR-483-3p promotes cell proliferation and suppresses apoptosis in rheumatoid arthritis fibroblast-like synoviocytes by targeting IGF-1. Biomedicine & Pharmacotheraphy, 130, 110519.

    Article  CAS  Google Scholar 

  31. Zhou, B., Peng, K., Wang, G., Chen, W., Liu, P., Chen, F., & Kang, Y. (2020). miR4833p promotes the osteogenesis of human osteoblasts by targeting Dikkopf 2 (DKK2) and the Wnt signaling pathway. International Journal of Molecular Medicine, 46, 1571–1581.

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Yu, Q., Liu, L., Zhang, X., Chang, H., Ma, S., Xie, Z., Tang, S., Ju, X., Zhu, H., Shen, B., & Zhang, Q. (2022). MiR-221-3p targets HIPK2 to promote diabetic wound healing. Microvascular Research, 140, 104306.

    Article  PubMed  CAS  Google Scholar 

  33. Li, R., Shang, J., Zhou, W., Jiang, L., Xie, D., & Tu, G. (2018). Overexpression of HIPK2 attenuates spinal cord injury in rats by modulating apoptosis, oxidative stress, and inflammation. Biomedicine & Pharmacotherapy, 103, 127–134.

    Article  CAS  Google Scholar 

  34. Jiang, Z., Bo, L., Meng, Y., Wang, C., Chen, T., Wang, C., Yu, X., & Deng, X. (2018). Overexpression of homeodomain-interacting protein kinase 2 (HIPK2) attenuates sepsis-mediated liver injury by restoring autophagy. Cell Death & Disease, 9, 847.

    Article  Google Scholar 

  35. Zhang, F., Qi, L., Feng, Q., Zhang, B., Li, X., Liu, C., Li, W., Liu, Q., Yang, D., Yin, Y., Peng, C., Wu, H., Tang, Z. H., Zhou, X., Xiang, Z., Zhang, Z., Wang, H., & Wei, B. (2021). HIPK2 phosphorylates HDAC3 for NF-κB acetylation to ameliorate colitis-associated colorectal carcinoma and sepsis. Proceedings of the National Academy of Sciences USA, 118, e2021798118.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by Natural Science Research Project of Colleges and Universities in Anhui Province (Grant no. KJ2021ZD0099) and Horizontal Scientific Research Project of Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College (Grant no. 662202204007).

Author information

Authors and Affiliations

Authors

Contributions

ZW and XQ: conceived and designed the experiments. ZW, XQ, JY, HY, RQ, CZ and WD: carried out the experiments. ZW, XQ and WD: drafted the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Wei Ding.

Ethics declarations

Conflict of interest

The authors have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Qin, X., Yuan, J. et al. MicroRNA-483-3p Inhibitor Ameliorates Sepsis-Induced Intestinal Injury by Attenuating Cell Apoptosis and Cytotoxicity Via Regulating HIPK2. Mol Biotechnol 66, 233–240 (2024). https://doi.org/10.1007/s12033-023-00734-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00734-x

Keywords

Navigation