Skip to main content

Advertisement

Log in

Circular RNA has Circ 001372-Reduced Inflammation in Ovalbumin-Induced Asthma Through Sirt1/NFAT5 Signaling Pathway by miRNA-128-3p

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we sought to investigate the prospective role of circ 001372 in modifying inflammation in ovalbumin-induced asthma. In the vivo model of asthma, the serum of circ 001372 was reduced. Down-regulation of circ 001372 increased inflammation reaction (TNF-α, IL-1β, IL-6, and IL-18) and induced COX-2 and iNOS protein expression in vitro model through activation of NFAT5 and suppression of Sirt1. Up-regulation of circ 001372 decreased inflammation reaction (TNF-α, IL-1β, IL-6, and IL-18) in vitro model through inactivation of NFAT5 and induction of Sirt1 by miRNA-128-3p. The miRNA-128-3p lowered the effects of circ 001372 on inflammation in vitro model. The Sirt1 inhibitor reduced the effects of circ 001372 on inflammation in vitro model. Our results revealed the serum of circ 001372 against inflammation in ovalbumin-induced asthma through Sirt1/NFAT5 by miRNA-128-3p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

NFAT:

Nuclear factor of activated T cells

CaN:

Calcineurin

HE:

Hematoxylin–eosin

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

TBST:

Tris buffer solution tween

ECL:

Electro-chemi-luminescence

References

  1. Svedsater, H., Jones, R., Bosanquet, N., Jacques, L., Lay, J. F., Leather, D. A., Vestbo, J., Collier, S., & Woodcock, A. (2018). Patient-reported outcomes with initiation of fluticasone furoate/vilanterol versus continuing usual care in the Asthma Salford Lung Study. Respiratory Medicine, 141, 198–206.

    Article  Google Scholar 

  2. Kho, A. T., McGeachie, M. J., Moore, K. G., Sylvia, J. M., Weiss, S. T., & Tantisira, K. G. (2018). Circulating microRNAs and prediction of asthma exacerbation in childhood asthma. Respiratory Research, 19, 128.

    Article  Google Scholar 

  3. Chan, P. H., To, C. Y., Chan, E. Y., Li, H., Zang, X., Chow, P. K., Liu, P. L., Leung, S. Y., Chan, C. H., & Chan, Y. C. (2016). A randomized placebo-controlled trial of traditional Chinese medicine as an add-on therapy to oral montelukast in the treatment of mild persistent asthma in children. Complementary Therapies in Medicine, 29, 219–228.

    Article  Google Scholar 

  4. Halling, M. L., Kjeldsen, J., Knudsen, T., Nielsen, J., & Hansen, L. K. (2017). Patients with inflammatory bowel disease have increased risk of autoimmune and inflammatory diseases. World Journal of Gastroenterology, 23, 6137–6146.

    Article  Google Scholar 

  5. Nguyen, D. V., Linderholm, A., Haczku, A., & Kenyon, N. (2017). Glucagon-like peptide 1: A potential anti-inflammatory pathway in obesity-related asthma. Pharmacology & Therapeutics, 180, 139–143.

    Article  CAS  Google Scholar 

  6. Shi, F., Qiu, C., & Yu, J. (2018). Comparison of fractional exhaled nitric oxide in elderly patients with asthma-chronic obstructive pulmonary disease overlap and other airway inflammatory diseases. Iranian Journal of Allergy, Asthma, and Immunology, 17, 232–239.

    PubMed  Google Scholar 

  7. Pacholewska, A., Kraft, M. F., Gerber, V., & Jagannathan, V. (2017). Differential expression of serum microRNAs supports CD4+ T cell differentiation into Th2/Th17 cells in severe equine asthma. Genes (Basel). https://doi.org/10.3390/genes8120383

    Article  Google Scholar 

  8. Pua, H. H., & Ansel, K. M. (2015). MicroRNA regulation of allergic inflammation and asthma. Current Opinion in Immunology, 36, 101–108.

    Article  CAS  Google Scholar 

  9. van den Berge, M., & Tasena, H. (2019). Role of microRNAs and exosomes in asthma. Current Opinion in Pulmonary Medicine, 25, 87–93.

    Article  Google Scholar 

  10. Zech, A., Ayata, C. K., Pankratz, F., Idzko, M., & Meyar, A. (2015). MicroRNA-155 modulates P2R signaling and Th2 priming of dendritic cells during allergic airway inflammation in mice. Allergy, 70, 1121–1129.

    Article  CAS  Google Scholar 

  11. Maneechotesuwan, K. (2018). Role of microRNA in severe asthma. Respir Investig. https://doi.org/10.1016/j.resinv.2018.10.005

    Article  PubMed  Google Scholar 

  12. Ma, X., Guo, S., Jiang, K., Yin, N., Yang, Y., & Zahoor, A. (2019). MiR-128 mediates negative regulation in staphylococcus aureus induced inflammation by targeting MyD88. International Immunopharmacology, 70, 135–146.

    Article  CAS  Google Scholar 

  13. Shyamasundar, S., Ong, C., Yung, L. L., Dheen, S. T., & Bay, B. H. (2018). miR-128 regulates genes associated with inflammation and fibrosis of rat kidney cells in vitro. Anatomical Record (Hoboken), 301, 913–921.

    Article  CAS  Google Scholar 

  14. Han, E. J., Kim, H. Y., Lee, N., Kim, N. H., Know, M., Jue, D. M., Park, Y. J., Cho, C. S., Jeong, D. Y., Lim, H. J., Lee, G. H., & Cho, H. (2017). Suppression of NFAT5-mediated inflammation and chronic arthritis by novel kappaB-binding inhibitors. eBioMedicine, 18, 261–273.

    Article  Google Scholar 

  15. Tellechea, M., & Buxade, M. (2018). NFAT5-regulated macrophage polarization supports the proinflammatory function of macrophages and T lymphocytes. The Journal of Immunology, 200, 305–315.

    Article  CAS  Google Scholar 

  16. da Martins, P. A. C., Salic, K., Gladka, M. M., Armand, A. S., Leptidis, S., Hansen, A., de Roo, C. J. C., & Bierhuizen, M. F. (2010). MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nature Cell Biology, 12, 1220–1227.

    Article  CAS  Google Scholar 

  17. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  18. Ariel, D., & Upadhyay, D. (2012). The role and regulation of microRNAs in asthma. Current opinion in Allergy and Clinical Immunology, 12, 49–52.

    Article  CAS  Google Scholar 

  19. Rebane, A., & Akdis, C. A. (2014). MicroRNAs in allergy and asthma. Current Allergy and Asthma Reports, 14, 424.

    Article  Google Scholar 

  20. Chen, Y., & Xu, T. (2018). Association of vitamin D receptor expression with inflammatory changes and prognosis of asthma. Experimental and Therapeutic Medicine, 16, 5096–5102.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rahbarghazi, R., Keyhanmanesh, R., Aslani, M. R., Hassanpour, M., & Ahmadi, M. (2019). Bone marrow mesenchymal stem cells and condition media diminish inflammatory adhesion molecules of pulmonary endothelial cells in an ovalbumin-induced asthmatic rat model. Microvascular Research, 121, 63–70.

    Article  CAS  Google Scholar 

  22. Ikhsan, M., Hiedayati, N., Maeyama, K., & Nurwidya, F. (2018). Nigella sativa as an anti-inflammatory agent in asthma. BMC Research Notes, 11, 744.

    Article  CAS  Google Scholar 

  23. Adachi, A., Takahashi, T., Ogata, T., Imoto, H. T., Nakanishi, N., Ueyama, T., & Matsubara, H. (2012). NFAT5 regulates the canonical Wnt pathway and is required for cardiomyogenic differentiation. Biochemical and Biophysical Research Communications, 426, 317–323.

    Article  CAS  Google Scholar 

  24. Pasten, C., Alvarado, C., Rocco, J., Contreras, L., Aracena, P., Liberona, J., Suazo, C., & Michea, L. (2018). L-NIL prevents the ischemia and reperfusion injury involving TRL4, GST, clusterin and NFAT5 in mice. Am J Physiol Renal Physiol, 316, F624–F634.

    Article  Google Scholar 

  25. Serr, I., Scherm, M. G., Zahm, A. M., Schug, J., Flynn, V. K., & Hippich, M. (2018). A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.aag1782

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pan, S., Cui, Y., Fu, Z., Zhang, L., & Xing, H. (2019). MicroRNA-128 is involved in dexamethasone-induced lipid accumulation via repressing SIRT1 expression in cultured pig preadipocytes. Journal of Steroid Biochemistry and Molecular Biology, 186, 185–195.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

HRL is responsible to the guarantor of integrity of the entire study, study concepts and design, definition of intellectual content, literature research, clinical studies, experimental studies, data acquisition and analysis, statistical analysis, and manuscript preparation and editing; NJW is responsible to the manuscript review. All authors are approved to this manuscript.

Corresponding author

Correspondence to Naijun Wan.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethical Approval

This experiment was approved by the Ethics Committee of Beijing Jishuitan Hospital. BABL/c mice were were obtained from the Laboratory Animal Center of Beijing University. BABL/c mice were obtained from the our hospital.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Wan, N. Circular RNA has Circ 001372-Reduced Inflammation in Ovalbumin-Induced Asthma Through Sirt1/NFAT5 Signaling Pathway by miRNA-128-3p. Mol Biotechnol 64, 1034–1044 (2022). https://doi.org/10.1007/s12033-022-00480-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00480-6

Keywords

Navigation