Skip to main content

Advertisement

Log in

Genomics of Lactic Acid Bacteria for Glycerol Dissimilation

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Lactic acid bacteria (LAB) are functional starter cultures in food and dairy industry and are also regarded as power houses for bioprocess and fermentation technology. Due to extensive applications in food and medical applications, intensive research and developmental activities are going on throughout the world to understand the genomic and metabolic aspects during the past few decades. These LAB strains have significant role in production of value added chemicals and fuels from lignocellulosic biomass and other by-product streams establishing a circular bioeconomy. In this context, we discuss the physiology and genetics of crude glycerol dissimilation in lactic acid bacteria, the value added chemicals produced from biodiesel-derived crude glycerol. The overview of metabolic engineering strategies to improve the cellular traits and future perspectives in constructing cellulolytic/hemicellulolytic LAB strains to establish a renewable and sustainable cost-effective biorefinery is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Johnson, D. T., & Taconi, K. A. (2007). The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production. Environmental Progress, 26(4), 338–348.

    Article  CAS  Google Scholar 

  2. Varankovich, N. V., Nickerson, M. T., & Korber, D. R. (2015). Probiotic-based strategies for therapeutic and prophylactic use against multiple gastrointestinal diseases. Frontiers in Microbiology, 6, 685. https://doi.org/10.3389/fmicb.2015.00685.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Martinez, R. C. R., Bedani, R., & Saad, S. M. I. (2015). Scientific evidence for health effects attributed to the consumption of probiotics and prebiotics: An update for current perspectives and future challenges. British Journal of Nutrition, 114(12), 1993–2015. https://doi.org/10.1017/S0007114515003864.

    Article  CAS  PubMed  Google Scholar 

  4. Duar, R. M., Lin, X. B., Zheng, J., Martino, M. E., Grenier, T., Pérez-Muñoz, M. E., et al. (2017). Lifestyles in transition: Evolution and natural history of the genus Lactobacillus. FEMS Microbiology Reviews, 41(Supp_1), S27–S48. https://doi.org/10.1093/femsre/fux030.

    Article  PubMed  Google Scholar 

  5. Liu, W., Pang, H., Zhang, H., & Cai, Y. (2014). Biodiversity of lactic acid bacteria. Lactic Acid Bacteria. https://doi.org/10.1007/978-94-017-8841-0_2.

    Article  Google Scholar 

  6. Sauer, M., Russmayer, H., Grabherr, R., Peterbauer, C. K., & Marx, H. (2017). The efficient clade: Lactic acid bacteria for industrial chemical production. Trends in Biotechnology, 35(8), 756–769. https://doi.org/10.1016/j.tibtech.2017.05.002.

    Article  CAS  PubMed  Google Scholar 

  7. Gaspar, P., Carvalho, A. L., Vinga, S., Santos, H., & Neves, A. R. (2013). From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnology Advances, 31(6), 764–788. https://doi.org/10.1016/j.biotechadv.2013.03.011.

    Article  CAS  PubMed  Google Scholar 

  8. Mazzoli, R., Bosco, F., Mizrahi, I., Bayer, E. A., & Pessione, E. (2014). Towards lactic acid bacteria-based biorefineries. Biotechnology Advances, 32(7), 1216–1236. https://doi.org/10.1016/j.biotechadv.2014.07.005.

    Article  CAS  PubMed  Google Scholar 

  9. Von Wright, A., & Axelsson, L. (2012). Lactic acid bacteria: An introduction. Lactic Acid Bacteria, Microbiological and functional aspects. Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  10. Bosma, E. F., Forster, J., & Nielsen, A. T. (2017). Lactobacilli and pediococci as versatile cell factories—Evaluation of strain properties and genetic tools. Biotechnology Advances, 35(4), 419–442. https://doi.org/10.1016/j.biotechadv.2017.04.002.

    Article  CAS  PubMed  Google Scholar 

  11. Kandler, O. (1983). Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 49(3), 209–224.

    Article  CAS  Google Scholar 

  12. Garrigues, C., Loubiere, P., Lindley, N. D., & Cocaign-Bousquet, M. (1997). Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: Predominant role of the NADH/NAD+ ratio. Journal of Bacteriology, 179(17), 5282–5287.

    Article  CAS  Google Scholar 

  13. Thomas, T. D., Ellwood, D. C., & Longyear, V. M. (1979). Change from homo-to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. Journal of Bacteriology, 138(1), 109–117.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rhee, S. K., & Pack, M. Y. (1980). Effect of environmental pH on fermentation balance of Lactobacillus bulgaricus. Journal of Bacteriology, 144(1), 217–221.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Westbrook, A. W., Miscevic, D., Kilpatrick, S., Bruder, M. R., Moo-Young, M., & Chou, C. P. (2018). Strain engineering for microbial production of value-added chemicals and fuels from glycerol. Biotechnology Advances. https://doi.org/10.1016/j.biotechadv.2018.10.006.

    Article  PubMed  Google Scholar 

  16. Vivek, N., Sindhu, R., Madhavan, A., Anju, A. J., Castro, E., Faraco, V., et al. (2017). Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate—Metabolic aspects, challenges and possibilities: An overview. Bioresource Technology, 239, 507–517. https://doi.org/10.1016/j.biortech.2017.05.056.

    Article  CAS  PubMed  Google Scholar 

  17. Da Silva, G. P., Mack, M., & Contiero, J. (2009). Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnology Advances, 27(1), 30–39. https://doi.org/10.1016/j.biotechadv.2008.07.006.

    Article  CAS  PubMed  Google Scholar 

  18. Sun, Y.-Q., Shen, J.-T., Yan, L., Zhou, J.-J., Jiang, L.-L., Chen, Y., et al. (2018). Advances in bioconversion of glycerol to 1, 3-propanediol: Prospects and challenges. Process Biochemistry. https://doi.org/10.1016/j.procbio.2018.05.009.

    Article  Google Scholar 

  19. Celińska, E. (2010). Debottlenecking the 1, 3-propanediol pathway by metabolic engineering. Biotechnology Advances, 28(4), 519–530. https://doi.org/10.1016/j.biotechadv.2010.03.003.

    Article  CAS  PubMed  Google Scholar 

  20. Kaur, G., Srivastava, A., & Chand, S. (2012). Advances in biotechnological production of 1, 3-propanediol. Biochemical Engineering Journal, 64, 106–118.

    Article  CAS  Google Scholar 

  21. Nakamura, C. E., & Whited, G. M. (2003). Metabolic engineering for the microbial production of 1, 3-propanediol. Current Opinion in Biotechnology, 14(5), 454–459. https://doi.org/10.1016/j.copbio.2003.08.005.

    Article  CAS  PubMed  Google Scholar 

  22. Saxena, R., Anand, P., Saran, S., Isar, J., & Agarwal, L. (2010). Microbial production and applications of 1, 2-propanediol. Indian Journal of Microbiology, 50(1), 2–11. https://doi.org/10.1007/s12088-010-0017-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garai-Ibabe, G., Ibarburu, I., Berregi, I., Claisse, O., Lonvaud-Funel, A., Irastorza, A., et al. (2008). Glycerol metabolism and bitterness producing lactic acid bacteria in cidermaking. International Journal of Food Microbiology, 121(3), 253–261. https://doi.org/10.1016/j.ijfoodmicro.2007.11.004.

    Article  CAS  PubMed  Google Scholar 

  24. Morita, H., Toh, H., Fukuda, S., Horikawa, H., Oshima, K., Suzuki, T., et al. (2008). Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Research, 15(3), 151–161. https://doi.org/10.1093/dnares/dsn009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lüthi-Peng, Q., Dileme, F., & Puhan, Z. (2002). Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Applied Microbiology and Biotechnology, 59(2–3), 289–296. https://doi.org/10.1007/s00253-002-1002-z.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, L., & Hatti-Kaul, R. (2017). Exploring Lactobacillus reuteri DSM20016 as a biocatalyst for transformation of longer chain 1, 2-diols: Limits with microcompartment. PLoS ONE, 12(9), e0185734. https://doi.org/10.1371/journal.pone.0185734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sriramulu, D. D., Liang, M., Hernandez-Romero, D., Raux-Deery, E., Lünsdorf, H., Parsons, J. B., et al. (2008). Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1, 2-propanediol by disproportionation. Journal of Bacteriology, 190(13), 4559–4567. https://doi.org/10.1128/JB.01535-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kang, T., Korber, D., & Tanaka, T. (2013). Glycerol and environmental factors: Effects on 1, 3-propanediol production and NAD+ regeneration in Lactobacillus panis PM 1. Journal of Applied Microbiology, 115(4), 1003–1011. https://doi.org/10.1128/AEM.01454-14.

    Article  CAS  PubMed  Google Scholar 

  29. Grahame, D. A., Kang, T. S., Khan, N. H., & Tanaka, T. (2013). Alkaline conditions stimulate the production of 1, 3-propanediol in Lactobacillus panis PM1 through shifting metabolic pathways. World Journal of Microbiology & Biotechnology, 29(7), 1207–1215. https://doi.org/10.1007/s11274-013-1283-7.

    Article  CAS  Google Scholar 

  30. Baeza-Jiménez, R., Lopez-Martinez, L., De la Cruz-Medina, J., Espinosa-De-Los-Monteros, J., & Garcia-Galindo, H. (2011). Effect of glucose on 1, 3-propanediol production by Lactobacillus reuteri. Revista Mexicana de Ingeniería Química, 10(1), 39–46.

    Google Scholar 

  31. Santos, F., Vera, J. L., van der Heijden, R., Valdez, G., de Vos, W. M., Sesma, F., et al. (2008). The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL1098. Microbiology, 154(1), 81–93. https://doi.org/10.1099/mic.0.2007/011569-0.

    Article  CAS  PubMed  Google Scholar 

  32. Santos, F., Teusink, B., Molenaar, D., van Heck, M., Wels, M., Sieuwerts, S., et al. (2009). Effect of amino acid availability on vitamin B12 production in Lactobacillus reuteri. Applied and Environmental Microbiology, 75(12), 3930–3936. https://doi.org/10.1128/AEM.02487-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Santos, F., Spinler, J. K., Saulnier, D. M., Molenaar, D., Teusink, B., de Vos, W. M., et al. (2011). Functional identification in Lactobacillus reuteri of a PocR-like transcription factor regulating glycerol utilization and vitamin B 12 synthesis. Microbial Cell Factories, 10(1), 55. https://doi.org/10.1186/1475-2859-10-55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Langa, S., Arqués, J. L., Gaya, P., Medina, M., & Landete, J. M. (2015). Glycerol and cobalamin metabolism in lactobacilli: Relevance of the propanediol dehydrogenase pdh30. European Food Research and Technology, 241(2), 173–184. https://doi.org/10.1007/s00217-015-2443-9.

    Article  CAS  Google Scholar 

  35. Stevens, M. J., Vollenweider, S., Meile, L., & Lacroix, C. (2011). 1, 3-Propanediol dehydrogenases in Lactobacillus reuteri: Impact on central metabolism and 3-hydroxypropionaldehyde production. Microbial Cell Factories, 10(1), 61. https://doi.org/10.1186/1475-2859-10-61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mota, M. J., Lopes, R. P., Sousa, S., Gomes, A. M., Delgadillo, I., & Saraiva, J. A. (2018). Lactobacillus reuteri growth and fermentation under high pressure towards the production of 1, 3-propanediol. Food Research International, 113, 424–432. https://doi.org/10.1016/j.foodres.2018.07.034.

    Article  CAS  PubMed  Google Scholar 

  37. Chen, L., Bromberger, P. D., Nieuwenhuiys, G., & Hatti-Kaul, R. (2016). Redox balance in Lactobacillus reuteri DSM20016: Roles of iron-dependent alcohol dehydrogenases in glucose/glycerol metabolism. PLoS ONE, 11(12), e0168107. https://doi.org/10.1371/journal.pone.0168107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hatti-Kaul, R., Chen, L., Dishisha, T., & Enshasy, H. E. (2018). Lactic acid bacteria: From starter cultures to producers of chemicals. FEMS Microbiology Letters, 365(20), fny213. https://doi.org/10.1093/femsle/fny213.

    Article  CAS  Google Scholar 

  39. Yang, F., Hanna, M. A., & Sun, R. (2012). Value-added uses for crude glycerol—A byproduct of biodiesel production. Biotechnology for Biofuels, 5(1), 13. https://doi.org/10.1186/1754-6834-5-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yazdani, S. S., & Gonzalez, R. (2007). Anaerobic fermentation of glycerol: A path to economic viability for the biofuels industry. Current Opinion in Biotechnology, 18(3), 213–219. https://doi.org/10.1016/j.copbio.2007.05.002.

    Article  CAS  PubMed  Google Scholar 

  41. Cadieux, P., Wind, A., Sommer, P., Schaefer, L., Crowley, K., Britton, R. A., et al. (2008). Evaluation of reuterin production in urogenital probiotic Lactobacillus reuteri RC-14. Applied and Environmental Microbiology, 74(15), 4645–4649. https://doi.org/10.1128/AEM.00139-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bauer, R., du Toit, M., & Kossmann, J. (2010). Influence of environmental parameters on production of the acrolein precursor 3-hydroxypropionaldehyde by Lactobacillus reuteri DSMZ 20016 and its accumulation by wine lactobacilli. International Journal of Food Microbiology, 137(1), 28–31. https://doi.org/10.1016/j.ijfoodmicro.2009.10.012.

    Article  CAS  PubMed  Google Scholar 

  43. Chen, G., & Chen, J. (2013). A novel cell modification method used in biotransformation of glycerol to 3-HPA by Lactobacillus reuteri. Applied Microbiology and Biotechnology, 97(10), 4325–4332. https://doi.org/10.1007/s00253-013-4723-2.

    Article  CAS  PubMed  Google Scholar 

  44. Burgé, G., Saulou-Bérion, C., Moussa, M., Pollet, B., Flourat, A., Allais, F., et al. (2015). Diversity of Lactobacillus reuteri strains in converting glycerol into 3-hydroxypropionic acid. Applied Biochemistry and Biotechnology, 177(4), 923–939. https://doi.org/10.1093/femsle/fny291.

    Article  PubMed  Google Scholar 

  45. Gopi, G. R., Ganesh, N., Pandiaraj, S., Sowmiya, B., Brajesh, R. G., & Ramalingam, S. (2015). A study on enhanced expression of 3-hydroxypropionic acid pathway genes and impact on its production in Lactobacillus reuteri. Food Technology and Biotechnology, 53(3), 331–336.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pflügl, S., Marx, H., Mattanovich, D., & Sauer, M. (2012). 1, 3-Propanediol production from glycerol with Lactobacillus diolivorans. Bioresource Technology, 119, 133–140. https://doi.org/10.1016/j.biortech.2012.05.121.

    Article  CAS  PubMed  Google Scholar 

  47. Vivek, N., Aswathi, T., Sven, P. R., Pandey, A., & Binod, P. (2017). Self-cycling fermentation for 1, 3-propanediol production: Comparative evaluation of metabolite flux in cell recycling, simple batch and continuous processes using Lactobacillus brevis N1E9. 3.3 strain. Journal of Biotechnology, 259, 110–119. https://doi.org/10.1016/j.jbiotec.2017.07.033.

    Article  CAS  PubMed  Google Scholar 

  48. Wang, C., Cui, Y., & Qu, X. (2018). Mechanisms and improvement of acid resistance in lactic acid bacteria. Archives of Microbiology, 200(2), 195–201. https://doi.org/10.1007/s00203-017-1446-2.

    Article  CAS  PubMed  Google Scholar 

  49. Vivek, N., Pandey, A., & Binod, P. (2016). Biological valorization of pure and crude glycerol into 1, 3-propanediol using a novel isolate Lactobacillus brevis N1E9. 3.3. Bioresource Technology, 213, 222–230. https://doi.org/10.1016/j.biortech.2016.02.020.

    Article  CAS  PubMed  Google Scholar 

  50. Ricci, M. A., Russo, A., Pisano, I., Palmieri, L., de Angelis, M., & Agrimi, G. (2015). Improved 1, 3-propanediol synthesis from glycerol by the robust Lactobacillus reuteri strain DSM 20016. Journal of Microbiology and Biotechnology, 25(6), 893–902.

    Article  CAS  Google Scholar 

  51. Chen, G., Lin, M., & Fang, B. (2015). Inhibition and in situ removal of organic acids during glucose/glycerol co-fermentation by Lactobacillus reuteri. Biochemical Engineering Journal, 99, 93–98. https://doi.org/10.1016/j.bej.2015.03.015.

    Article  CAS  Google Scholar 

  52. Daniel, R., Bobik, T. A., & Gottschalk, G. (1998). Biochemistry of coenzyme B12-dependent glycerol and diol dehydratases and organization of the encoding genes. FEMS Microbiology Reviews, 22(5), 553–566. https://doi.org/10.1111/j.1574-6976.1998.tb00387.x.

    Article  CAS  PubMed  Google Scholar 

  53. Vaidyanathan, H., Kandasamy, V., Ramakrishnan, G. G., Ramachandran, K., Jayaraman, G., & Ramalingam, S. (2011). Glycerol conversion to 1, 3-Propanediol is enhanced by the expression of a heterologous alcohol dehydrogenase gene in Lactobacillus reuteri. AMB Express, 1(1), 37. https://doi.org/10.1186/2191-0855-1-37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ji, X.-J., Huang, H., & Ouyang, P.-K. (2011). Microbial 2, 3-butanediol production: A state-of-the-art review. Biotechnology Advances, 29(3), 351–364. https://doi.org/10.1016/j.biotechadv.2011.01.007.

    Article  CAS  PubMed  Google Scholar 

  55. Jiang, Y., Liu, W., Zou, H., Cheng, T., Tian, N., & Xian, M. (2014). Microbial production of short chain diols. Microbial Cell Factories, 13(1), 165. https://doi.org/10.1186/s12934-014-0165-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vollenweider, S., Grassi, G., König, I., & Puhan, Z. (2003). Purification and structural characterization of 3-hydroxypropionaldehyde and its derivatives. Journal of Agricultural and Food Chemistry, 51(11), 3287–3293. https://doi.org/10.1021/jf021086d.

    Article  CAS  PubMed  Google Scholar 

  57. Sardari, R. R., Dishisha, T., Pyo, S.-H., & Hatti-Kaul, R. (2013). Biotransformation of glycerol to 3-hydroxypropionaldehyde: Improved production by in situ complexation with bisulfite in a fed-batch mode and separation on anion exchanger. Journal of Biotechnology, 168(4), 534–542. https://doi.org/10.1002/bit.24787.

    Article  CAS  PubMed  Google Scholar 

  58. Sardari, R. R., Dishisha, T., Pyo, S. H., & HattiKaul, R. (2013). Improved production of 3-hydroxypropionaldehyde by complex formation with bisulfite during biotransformation of glycerol. Biotechnology and Bioengineering, 110(4), 1243–1248. https://doi.org/10.1002/bit.24787.

    Article  CAS  PubMed  Google Scholar 

  59. Luo, L. H., Seo, J.-W., Baek, J.-O., Oh, B.-R., Heo, S.-Y., Hong, W.-K., et al. (2011). Identification and characterization of the propanediol utilization protein PduP of Lactobacillus reuteri for 3-hydroxypropionic acid production from glycerol. Applied Microbiology and Biotechnology, 89(3), 697–703. https://doi.org/10.1007/s00253-010-2887-6.

    Article  CAS  PubMed  Google Scholar 

  60. Tobajas, M., Mohedano, A., Casas, J., & Rodríguez, J. (2007). A kinetic study of reuterin production by Lactobacillus reuteri PRO 137 in resting cells. Biochemical Engineering Journal, 35(2), 218–225. https://doi.org/10.1016/j.bej.2007.01.017.

    Article  CAS  Google Scholar 

  61. Koutinas, A. A., Vlysidis, A., Pleissner, D., Kopsahelis, N., Garcia, I. L., Kookos, I. K., et al. (2014). Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chemical Society Reviews, 43(8), 2587–2627. https://doi.org/10.1039/c3cs60293a.

    Article  CAS  PubMed  Google Scholar 

  62. Chen, L., Ren, S., & Ye, X. P. (2015). Glycerol conversion to lactic acid with sodium hydroxide as a homogeneous catalyst in a fed-batch reactor. Reaction Kinetics, Mechanisms and Catalysis, 114(1), 93–108. https://doi.org/10.1007/s11144-014-0786-z.

    Article  CAS  Google Scholar 

  63. Ftouni, J., Villandier, N., Auneau, F., Besson, M., Djakovitch, L., & Pinel, C. (2015). From glycerol to lactic acid under inert conditions in the presence of platinum-based catalysts: The influence of support. Catalysis Today, 257, 267–273. https://doi.org/10.1016/j.cattod.2014.09.034.

    Article  CAS  Google Scholar 

  64. Sumitha, V., Christy Mathelin, R., & Sivanandham, M. (2018). Effect of major and minor nutrients on lactic acid production using biodiesel waste-derived crude glycerol as a carbon source by Lactobacillus casei NCIM 2125. Energy Sources Part A: Recovery, Utilization, and Environmental Effects. https://doi.org/10.1080/15567036.2018.1475519.

    Article  Google Scholar 

  65. Veiga-Da-Cunha, M., & Foster, M. A. (1992). 1, 3-Propanediol: NAD+ oxidoreductases of Lactobacillus brevis and Lactobacillus buchneri. Applied and Environmental Microbiology, 58(6), 2005–2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Berezina, O. V., Zakharova, N. V., Brandt, A., Yarotsky, S. V., Schwarz, W. H., & Zverlov, V. V. (2010). Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Applied Microbiology and Biotechnology, 87(2), 635–646. https://doi.org/10.1007/s00253-010-2480-z.

    Article  CAS  PubMed  Google Scholar 

  67. Liu, S., Bischoff, K. M., Leathers, T. D., Qureshi, N., Rich, J. O., & Hughes, S. R. (2012). Adaptation of lactic acid bacteria to butanol. Biocatalysis and Agricultural Biotechnology, 1(1), 57–61.

    Article  CAS  Google Scholar 

  68. Ghiaci, P., Lameiras, F., Norbeck, J., & Larsson, C. (2014). Production of 2-butanol through meso-2, 3-butanediol consumption in lactic acid bacteria. FEMS Microbiology Letters, 360(1), 70–75. https://doi.org/10.1111/1574-6968.12590.

    Article  CAS  PubMed  Google Scholar 

  69. Moraïs, S., Shterzer, N., Grinberg, I. R., Mathiesen, G., Eijsink, V. G., Axelsson, L., et al. (2013). Establishment of a simple Lactobacillus plantarum cell consortium for cellulase-xylanase synergistic interactions. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.01211-13.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Roach, D. R., Khatibi, P. A., Bischoff, K. M., Hughes, S. R., & Donovan, D. M. (2013). Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations. Biotechnology for Biofuels, 6(1), 20. https://doi.org/10.1186/1754-6834-6-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lucena, B. T., dos Santos, B. M., Moreira, J. L., Moreira, A. P. B., Nunes, A. C., Azevedo, V., et al. (2010). Diversity of lactic acid bacteria of the bioethanol process. BMC Microbiology, 10(1), 298. https://doi.org/10.1186/1471-2180-10-298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Solem, C., Dehli, T., & Jensen, P. R. (2013). Rewiring Lactococcus lactis for ethanol production. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.03623-12.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Liu, J., Dantoft, S. H., Würtz, A., Jensen, P. R., & Solem, C. (2016). A novel cell factory for efficient production of ethanol from dairy waste. Biotechnology for Biofuels, 9(1), 33. https://doi.org/10.1186/s13068-016-0448-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Börner, R. A., Kandasamy, V., Axelsen, A. M., Nielsen, A. T., & Bosma, E. F. (2018). High-throughput genome editing tools for lactic acid bacteria: Opportunities for food, feed, pharma and biotech. Preprints. https://doi.org/10.20944/preprints201809.0354.v1.

    Article  Google Scholar 

  75. Zhang, Y. H. P. (2008). Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. Journal of Industrial Microbiology and Biotechnology, 35(5), 367–375. https://doi.org/10.1007/s10295-007-0293-6.

    Article  CAS  PubMed  Google Scholar 

  76. Alizadeh, H., Teymouri, F., Gilbert, T. I., & Dale, B. E. (2005). Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Applied Biochemistry and Biotechnology, 124(1–3), 1133–1141.

    Article  Google Scholar 

  77. Ishizaki, A., Ueda, T., Tanaka, K., & Stanbury, P. F. (1992). L-lactate production from xylose employing Lactococcus lactis IO-1. Biotechnology Letters, 14(7), 599–604.

    Article  CAS  Google Scholar 

  78. Tanaka, K., Komiyama, A., Sonomoto, K., Ishizaki, A., Hall, S., & Stanbury, P. (2002). Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Applied Microbiology and Biotechnology, 60(1–2), 160–167. https://doi.org/10.1007/s00253-002-1078-5.

    Article  CAS  PubMed  Google Scholar 

  79. Kato, H., Shiwa, Y., Oshima, K., Machii, M., Araya-Kojima, T., Zendo, T., et al. (2012). Complete genome sequence of Lactococcus lactis IO-1, a lactic acid bacterium that utilizes xylose and produces high levels of L-lactic acid. Journal of Bacteriology, 194(8), 2102–2103. https://doi.org/10.1128/JB.00074-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Boguta, A. M., Bringel, F., Martinussen, J., & Jensen, P. R. (2014). Screening of lactic acid bacteria for their potential as microbial cell factories for bioconversion of lignocellulosic feedstocks. Microbial Cell Factories, 13(1), 97. https://doi.org/10.1186/s12934-014-0097-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shahab, R. L., Luterbacher, J. S., Brethauer, S., & Studer, M. H. (2018). Consolidated bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consortium. Biotechnology and Bioengineering, 115(5), 1207–1215. https://doi.org/10.1002/bit.26541.

    Article  CAS  PubMed  Google Scholar 

  82. Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2005). Microbial cellulases-production, applications and challenges. Journal of Scientiifc and Industrial Research, 64, 832–844.

    CAS  Google Scholar 

  83. Tarraran, L., & Mazzoli, R. (2018). Alternative strategies for lignocellulose fermentation through lactic acid bacteria: State-of-the-art and perspectives. FEMS Microbiology Letters. https://doi.org/10.1093/femsle/fny126.

    Article  PubMed  Google Scholar 

  84. Khan, N. H., Kang, T. S., Grahame, D. A., Haakensen, M. C., Ratanapariyanuch, K., Reaney, M. J., et al. (2013). Isolation and characterization of novel 1, 3-propanediol-producing Lactobacillus panis PM1 from bioethanol thin stillage. Applied Microbiology and Biotechnology, 97(1), 417–428. https://doi.org/10.1007/s00253-012-4386-4.

    Article  CAS  PubMed  Google Scholar 

  85. Lindlbauer, K. A., Marx, H., & Sauer, M. (2017). Effect of carbon pulsing on the redox household of Lactobacillus diolivorans in order to enhance 1, 3-propanediol production. New Biotechnology, 34, 32–39. https://doi.org/10.1016/j.nbt.2016.10.004.

    Article  CAS  PubMed  Google Scholar 

  86. Yazdani, S. S., & Gonzalez, R. (2008). Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metabolic Engineering, 10(6), 340–351. https://doi.org/10.1016/j.copbio.2007.05.002.

    Article  CAS  Google Scholar 

  87. Bachmann, H., Molenaar, D., Branco dos Santos, F., & Teusink, B. (2017). Experimental evolution and the adjustment of metabolic strategies in lactic acid bacteria. FEMS Microbiology Reviews, 41(Supp_1), S201–S219. https://doi.org/10.1093/femsre/fux024.

    Article  PubMed  Google Scholar 

  88. Pflügl, S., Marx, H., Mattanovich, D., & Sauer, M. (2013). Genetic engineering of Lactobacillus diolivorans. FEMS Microbiology Letters, 344(2), 152–158. https://doi.org/10.1111/1574-6968.12168.

    Article  CAS  PubMed  Google Scholar 

  89. Leloup, L., Ehrlich, S. D., Zagorec, M., & Morel-Deville, F. (1997). Single-crossover integration in the Lactobacillus sake chromosome and insertional inactivation of the ptsI and lacL genes. Applied and Environmental Microbiology, 63(6), 2117–2123.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Narisetty Vivek acknowledges Department of Science and Technology (DST), New Delhi for DST-INSPIRE fellowship scheme for doctoral studies. Narisetty Vivek, Hazeena S H, Rajesh R O and Lakshmi M Nair acknowledge Academy of Scientific and Innovative Research (AcSIR) for providing resources to carry out doctoral studies. Raveendran Sindhu acknowledges the Department of Science and Technology for financial support under DST WOS-B scheme. Binod P and Kodakkattil Babu Anjali acknowledges CSIR for research grant under CSD-Mission project (HCP 0009) and Binod P, Lakshmi M Nair, Binoop Mohan, and Salini Chandrasekharan Nair acknowledges financial support by the Department of Science and Technology (DST), New Delhi under INNO-INDIGO/INDO-NORDEN project (Sanction No. DST/IMRCD/INNO-INDIGO/INDO-NORDEN/2017(G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parameswaran Binod.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vivek, N., Hazeena, S.H., Rajesh, R.O. et al. Genomics of Lactic Acid Bacteria for Glycerol Dissimilation. Mol Biotechnol 61, 562–578 (2019). https://doi.org/10.1007/s12033-019-00186-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00186-2

Keywords

Navigation