Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) system has been successfully used for precise genome editing in many plant species, including in carrot cells, very recently. However, no stable gene-editing carrot plants were obtained with CRISPR/Cas9 system to date. In the present study, four sgRNA expression cassettes, individually driven by four different promoters and assembled in a single CRISPR/Cas9 vector, were transformed into carrots using Agrobacterium-mediated genetic transformation. Four sites of DcPDS and DcMYB113-like genes were chosen as targets. Knockout of DcPDS in orange carrot ‘Kurodagosun’ resulted in the generation of albino carrot plantlets, with about 35.3% editing efficiency. DcMYB113-like was also successfully edited in purple carrot ‘Deep purple’, resulting in purple depigmented carrot plants, with about 36.4% rate of mutation. Sequencing analyses showed that insertion, deletion, and substitution occurred in the target sites, generating heterozygous, biallelic, and chimeric mutations. The highest efficiency of mutagenesis was observed in the sites targeted by AtU6-29-driven sgRNAs in both DcPDS- and DcMYB113-like-knockout T0 plants, which always induced double-strand breaks in the target sites. Our results proved that CRISPR/Cas9 system could be for generating stable gene-editing carrot plants.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Vogel, G. (2005). How does a single somatic cell become a whole plant? Science, 309, 86.
Kammerer, D., Carle, R., & Schieber, A. (2004). Quantification of anthocyanins in black carrot extracts (Daucus carota ssp. sativus var. atrorubens Alef.) and evaluation of their color properties. European Food Research and Technology, 219, 479–486.
Krinsky, N. I., & Johnson, E. J. (2005). Carotenoid actions and their relation to health and disease. Molecular Aspects of Medicine, 26, 459–516.
Clotault, J., Peltier, D., Berruyer, R., Thomas, M., Briard, M., & Geoffriau, E. (2008). Expression of carotenoid biosynthesis genes during carrot root development. Journal of Experimental Botany, 59, 3563–3573.
Montilla, E. C., Arzaba, M. R., Hillebrand, S., & Winterhalter, P. (2011). Anthocyanin composition of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) cultivars Antonina, Beta Sweet, Deep Purple, and Purple Haze. J. Agric. Food. Chem., 59, 3385–3390.
Xu, Z. S., Tan, H. W., Wang, F., Hou, X. L., & Xiong, A. S. (2014) CarrotDB: A genomic and transcriptomic database for carrot. Database (Oxford), 2014, 1229–1245.
Iorizzo, M., Ellison, S., Senalik, D., Zeng, P., Satapoomin, P., Huang, J., Bowman, M., Iovene, M., Sanseverino, W., Cavagnaro, P., Yildiz, M., Macko-Podgorni, A., Moranska, E., Grzebelus, E., Grzebelus, D., Ashrafi, H., Zheng, Z., Cheng, S., Spooner, D., Van Deynze, A., & Simon, P. (2016). A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nature Genetics, 48, 657–666.
Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 11, 636–646.
Joung, J. K., & Sander, J. D. (2013). TALENs: A widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology., 14, 49–55.
Pennisi, E. (2013). The CRISPR craze. Science, 341, 833–836.
Johnson, R. D., & Jasin, M. (2001). Double-strand-break-induced homologous recombination in mammalian cells. Biochemical Society Transactions, 29, 196–201.
Sonoda, E., Hochegger, H., Saberi, A., Taniguchi, Y., & Takeda, S. (2006). Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair, 5, 1021–1029.
Feng, Z. Y., Zhang, B. T., Ding, W. N., Liu, X. D., Yang, D. L., Wei, P. L., Cao, F. Q., Zhu, S. H., Zhang, F., Mao, Y. F., & Zhu, J. K. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 23, 1229–1232.
Li, J. F., Norville, J. E., Aach, J., McCormack, M., Zhang, D. D., Bush, J., Church, G. M., & Sheen, J. (2013). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 31, 688–691.
Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D. G., & Kamoun, S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 31, 691–693.
Miao, J., Guo, D. S., Zhang, J. Z., Huang, Q. P., Qin, G. J., Zhang, X., Wan, J. M., Gu, H. Y., & Qu, L. J. (2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 23, 1233–1236.
Tang, X., Lowder, L. G., Zhang, T., Malzahn, A. A., Zheng, X., Voytas, D. F., Zhong, Z., Chen, Y., Ren, Q., Li, Q., Kirkland, E. R., Zhang, Y., & Qi, Y. (2017). A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants, 3, 17108.
Wang, M., Mao, Y., Lu, Y., Tao, X., & Zhu, J. K. (2017). Multiplex gene editing in rice using the CRISPR-Cpf1 System. Molecular Plant, 10, 1011–1013.
Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J. J., Qiu, J. L., & Gao, C. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31, 686–688.
Wang, Y. P., Cheng, X., Shan, Q. W., Zhang, Y., Liu, J. X., Gao, C. X., & Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32, 947–951.
Liang, Z., Zhang, K., Chen, K. L., & Gao, C. X. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics, 41, 63–68.
Char, S. N., Neelakandan, A. K., Nahampun, H., Frame, B., Main, M., Spalding, M. H., Becraft, P. W., Meyers, B. C., Walbot, V., Wang, K., & Yang, B. (2017). An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnology Journal, 15, 257–268.
Jacobs, T. B., LaFayette, P. R., Schmitz, R. J., & Parrott, W. A. (2015). Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology, 15, 1–10.
Li, Z. S., Liu, Z. B., Xing, A. Q., Moon, B. P., Koellhoffer, J. P., Huang, L. X., Ward, R. T., Clifton, E., Falco, S. C., & Cigan, A. M. (2015). Cas9-guide RNA directed genome editing in soybean. Plant Physiology, 169, 960–970.
Wang, S. H., Zhang, S. B., Wang, W. X., Xiong, X. Y., Meng, F. R., & Cui, X. (2015). Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Reports, 34, 1473–1476.
Jiang, W. Z., Zhou, H. B., Bi, H. H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41, e188.
Li, C., Unver, T., & Zhang, B. H. (2017). A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L.). Scientific Reports, 7, 43902.
Brooks, C., Nekrasov, V., Lippman, Z. B., & Van Eck, J. (2014). Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiology, 166, 1292–1297.
Pan, C. T., Ye, L., Qin, L., Liu, X., He, Y. J., Wang, J., Chen, L. F., & Lu, G. (2016). CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports, 6, 46916.
Jia, H. G., & Wang, N. (2014). Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE, 9, e93806.
Nishitani, C., Hirai, N., Komori, S., Wada, M., Okada, K., Osakabe, K., Yamamoto, T., & Osakabe, Y. (2016). Efficient genome editing in apple using a CRISPR/Cas9 system. Scientific Reports, 6, 31481.
Nakajima, I., Ban, Y., Azuma, A., Onoue, N., Moriguchi, T., Yamamoto, T., Toki, S., & Endo, M. (2017). CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS ONE, 12, e0177966.
Fan, D., Liu, T. T., Li, C. F., Jiao, B., Li, S., Hou, Y. S., & Luo, K. M. (2015). Efficient CRISPR/Cas9-mediated targeted mutagenesis in populus in the first generation. Scientific Reports, 5, 12217.
Oleszkiewicz, M. Klimek-Chodacka,T., Lowder, L. G., Qi, Y., & Baranski, R. (2018). Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Reports, 37, 575–586.
Qin, G. J., Gu, H. Y., Ma, L. G., Peng, Y. B., Deng, X. W., Chen, Z. L., & Qu, L. J. (2007). Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Research, 17, 471–482.
Li, S. N., Wang, W. Y., Gao, J. L., Yin, K. Q., Wang, R., Wang, C. C., Petersen, M., Mundy, J., & Qiu, J. L. (2016). MYB75 phosphorylation by MPK4 Is required for light-induced anthocyanin accumulation in Arabidopsis. The Plant Cell, 28, 2866–2883.
Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., Wang, B., Yang, Z., Li, H., Lin, Y., Xie, Y., Shen, R., Chen, S., Wang, Z., Guo, J., Chen, L., Zhao, X., Dong, Z., & Liu, Y. G. (2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 8, 1274–1284.
Wang, F., Wang, G. L., Hou, X. L., Li, M. Y., Xu, Z. S., & Xiong, A. S. (2018). The genome sequence of ‘Kurodagosun’, a major carrot variety in Japan and China, reveals insights into biological research and carrot breeding. Molecular Genetics and Genomics, 293, 861–871.
Hardegger, M., & Sturm, A. (1998). Transformation and regeneration of carrot (Daucus carota L.). Molecular Breeding, 4, 119–127.
Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50, 151–158.
Chen, W. P., & Punja, Z. K. (2002). Transgenic herbicide- and disease-tolerant carrot (Daucus carota L.) plants obtained through Agrobacterium-mediated transformation. Plant Cell Reports, 20, 929–935.
Liu, W., Xie, X., Ma, X., Li, J., Chen, J., & Liu, Y. G. (2015). DSDecode: A web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations. Molecular Plant, 8, 1431–1433.
Kim, H., Kim, S. T., Ryu, J., Choi, M. K., Kweon, J., Kang, B. C., Ahn, H. M., Bae, S., Kim, J., Kim, J. S., & Kim, S. G. (2016). A simple, flexible and high-throughput cloning system for plant genome editing via CRISPR-Cas system. Journal of Integrative Plant Biology, 58, 705–712.
Cermak, T., Baltes, N. J., Cegan, R., Zhang, Y., & Voytas, D. F. (2015) High-frequency, precise modification of the tomato genome. Genome Biology, 16, 232
Gil-Humanes, J., Wang, Y. P., Liang, Z., Shan, Q. W., Ozuna, C. V., Sanchez-Leon, S., Baltes, N. J., Starker, C., Barro, F., Gao, C., & Voytas, D. F. (2017). High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. The Plant Journal, 89, 1251–1262.
Liang, G., Zhang, H. M., Lou, D. J., & Yu, D. Q. (2016) Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Scientific Reports-UK, 6, 21451.
Ye, M., Peng, Z., Tang, D., Yang, Z., Li, D., Xu, Y., Zhang, C., & Huang, S. (2018) Generation of self-compatible diploid potato by knockout of S-RNase. Nature Plants, 4, 651
Clasen, B. M., Stoddard, T. J., Luo, S., Demorest, Z. L., Li, J., Cedrone, F., Tibebu, R., Davison, S., Ray, E. E., Daulhac, A., Coffman, A., Yabandith, A., Retterath, A., Haun, W., Baltes, N. J., Mathis, L., Voytas, D. F., & Zhang, F. (2016). Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnology Journal, 14, 169–176.
Acknowledgements
The authors thank Prof. Yao-Guang Liu (South China Agriculture University, Guangzhou, China) for providing the plant binary vector pYLCRISPR/Cas9 and the sgRNA plasmids. The research was supported by the National Natural Science Foundation of China (Grant Nos. 31501775; 31872098), Open Project of State Key Laboratory of Crop Genetics and Germplasm Enhancement (Grant No. ZW201710) and Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant No. PAPD).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Xu, ZS., Feng, K. & Xiong, AS. CRISPR/Cas9-Mediated Multiply Targeted Mutagenesis in Orange and Purple Carrot Plants. Mol Biotechnol 61, 191–199 (2019). https://doi.org/10.1007/s12033-018-00150-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12033-018-00150-6
Keywords
Profiles
- Ai-Sheng Xiong View author profile