Skip to main content
Log in

Expression of Cholesterol Hydroxylase/Lyase System Proteins in Yeast S. cerevisiae Cells as a Self-Processing Polyprotein

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

2A peptide discovered in Picornaviridae is capable of self-cleavage providing an opportunity to carry out synthesis of several proteins using one transcript. Dissociation in the 2A sequence during translation leads to the individual proteins formation. We constructed cDNA including genes of the bovine cholesterol hydroxylase/lyase (CHL) system proteins—cytochrome P450scc (CYP11A1), adrenodoxin (Adx) and adrenodoxin reductase (AdR), that are fused into a single ORF using FMDV 2A nucleotide sequences. The constructed vectors direct the expression of cDNA encoding polyprotein P450scc-2A-Adx-2A-AdR (CHL-2A) in Escherichia coli and Saccharomyces cerevisiae. The induced bacterial cells exhibit a high level of CHL-2A expression, but polyprotein is not cleaved at the FMDV sites. In yeast S. cerevisiae, the discrete proteins P450scc-2A, Adx-2A and AdR are expressed. Moreover, a significant proportion of AdR and Adx is present in a fusion Adx-2A-AdR. Thus, the first 2A linker provides an efficient cleavage of the polyprotein, while the second 2A linker demonstrates lower efficiency. Cholesterol hydroxylase/lyase activity registered in the recombinant yeast cell homogenate indicates that the catalytically active CHL system is present in these cells. Consequently, for the first time the mammalian system of cytochrome P450 has been successfully reconstructed in yeast cells through expressing the self-processing polyprotein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ryan, M. D., King, A. M., & Thomas, G. P. (1991). Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. Journal of General Virology, 72, 2727–2732.

    Article  CAS  Google Scholar 

  2. Donnelly, M. L. L., Luke, G., Mehrotra, A., Li, X., Hughes, L., Gani, D., et al. (2001). Analysis of the apthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: A putative ribosomal ‘skip’. Journal of General Virology, 82, 1013–1025.

    Article  CAS  Google Scholar 

  3. Ryan, M. D., & Drew, J. (1994). Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. The EMBO Journal, 13, 928–933.

    CAS  Google Scholar 

  4. Furler, S., Paterna, J. C., Weibel, M., & Büeler, H. (2001). Recombinant AAV vectors containing the foot and mouth disease virus 2A sequence confer efficient bicistronic gene expression in cultured cells and rat substantia nigra neurons. Gene Therapy, 8, 864–873.

    Article  CAS  Google Scholar 

  5. Simmons, A. D., Moskalenko, M., Creson, J., Fang, J., Yi, S., VanRoey, M. J., et al. (2008). Local secretion of anti-CTLA-4 enhances the therapeutic efficacy of a cancer immunotherapy with reduced evidence of systemic autoimmunity. Cancer Immunology, Immunotherapy, 57, 1263–1270.

    Article  CAS  Google Scholar 

  6. Kim, J., Lee, S., Li, L., Park, H., Park, J., Lee, K., et al. (2011). High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS ONE, 6, e18556.

    Article  CAS  Google Scholar 

  7. Chng, J., Wang, T., Nian, R., Lau, A., Hoi, K. M., Ho, S. C., et al. (2015). Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells. MAbs, 7, 403–412.

    Article  CAS  Google Scholar 

  8. Cinti, A., De Giorgi, M., Chisci, E., Arena, C., Galimberti, G., Farina, L., et al. (2015). Simultaneous overexpression of functional human HO-1, E5NT and ENTPD1 protects murine fibroblasts against TNF-α-induced injury in vitro. PLoS ONE, 10, e0141933.

    Article  Google Scholar 

  9. Daniels, R. W., Rossano, A. J., Macleod, G. T., & Ganetzky, B. (2014). Expression of multiple transgenes from a single construct using viral 2A peptides in Drosophila. PLoS ONE, 9, e100637.

    Article  Google Scholar 

  10. Amrani, A. E., Barakate, A., Askari, B. M., Li, X., Roberts, A. G., Ryan, M. D., et al. (2004). Coordinate expression and independent subcellular targeting of multiple proteins from a single transgene. Plant Physiology, 135, 16–24.

    Article  Google Scholar 

  11. Ha, S.-H., Liang, Y. S., Jung, H., Ahn, M.-J., Suh, S.-C., Kweon, S.-J., et al. (2010). Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnology Journal, 8, 928–938.

    Article  CAS  Google Scholar 

  12. Wang, S., Yao, Q., Tao, J., Qiao, Y., & Zhang, Z. (2007). Co-ordinate expression of glycine betaine synthesis genes linked by the FMDV 2A region in a single open reading frame in Pichia pastoris. Applied Microbiology and Biotechnology, 77, 891–899.

    Article  CAS  Google Scholar 

  13. Roongsawang, N., Promdonkoy, P., Wongwanichpokhin, M., Sornlake, W., Puseenam, A., Eurwilaichitr, L., et al. (2010). Coexpression of fungal phytase and xylanase utilizing the cis-acting hydrolase element in Pichia pastoris. FEMS Yeast Research, 10, 909–916.

    Article  CAS  Google Scholar 

  14. Sun, Y.-F., Lin, Y., Zhang, J.-H., Zheng, S.-P., Ye, Y.-R., Liang, X.-X., et al. (2012). Double Candida antarctica lipase B co-display on Pichia pastoris cell surface based on a self-processing foot-and-mouth disease virus 2A peptide. Applied Microbiology and Biotechnology, 96, 1539–1550.

    Article  CAS  Google Scholar 

  15. Miller, W. L. (2008). Steroidogenic enzymes. Endocrine Development, 13, 1–18.

    Article  CAS  Google Scholar 

  16. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  17. Rhee, S. K., Icho, T., & Wickner, R. B. (1989). Structure and nuclear localization signal of the SKI3 antiviral protein of Saccharomyces cerevisiae. Yeast, 5, 149–158.

    Article  CAS  Google Scholar 

  18. Wada, A., Mathew, P. A., Barnes, H. J., Sanders, D., Estabrook, R. W., & Waterman, M. R. (1991). Expression of functional bovine cholesterol side chain cleavage cytochrome P450 (P450scc) in Escherichia coli. Archives of Biochemistry and Biophysics, 290, 376–380.

    Article  CAS  Google Scholar 

  19. Hannemann, F., Virus, C., & Bernhardt, R. (2006). Design of an Escherichia coli system for whole cell mediated steroid synthesis and molecular evolution of steroid hydroxylases. Journal of Biotechnology, 124, 172–181.

    Article  CAS  Google Scholar 

  20. Sagara, Y., Takata, Y., Miyata, T., Hara, T., & Horiuchi, T. (1987). Cloning and sequence analysis of adrenodoxin reductase cDNA from bovine adrenal cortex. The Journal of Biochemistry, 102, 1333–1336.

    Article  CAS  Google Scholar 

  21. Uhlmann, H., Kraft, R., & Bernhardt, R. (1994). C-terminal region of adrenodoxin affects its structural integrity and determines differences in its electron transfer function to cytochrome P-450. The Journal of biological chemistry, 269, 22557–22564.

    CAS  Google Scholar 

  22. Makeeva, D. S., Dovbnya, D. V., Donova, M. V., & Novikova, L. A. (2013). Functional reconstruction of bovine P450scc steroidogenic system in Escherichia coli. American Journal of Molecular Biology, 3, 173–182.

    Article  CAS  Google Scholar 

  23. Savelev, A. S., Novikova, L. A., Drutsa, V. L., Isaeva, L. V., Chernogolov, A. A., Usanov, S. A., et al. (1997). Synthesis and some aspects of topogenesis of bovine cytochrome P450scc in yeast. Biochemistry (Moscow), 62, 779–786.

    CAS  Google Scholar 

  24. Cullin, C., & Pompon, D. (1988). Synthesis of functional mouse cytochromes P-450 P1 and chimeric P-450 P3-1 in the yeast Saccharomyces cerevisiae. Gene, 65, 203–217.

    Article  CAS  Google Scholar 

  25. Nazarov, P. A., Drutsa, V. I., Miller, W. I., Shkumatov, V. M., Luzikov, V. N., & Novikova, L. A. (2003). Formation and functioning of fused cholesterol side-chain cleavage enzymes. DNA and Cell Biology, 22, 243–252.

    Article  CAS  Google Scholar 

  26. Akiyoshi-Shibata, M., Sakaki, T., Yabusaki, Y., Murakami, H., & Ohkawa, H. (1991). Expression of bovine adrenodoxin and NADPH-adrenodoxin reductase cDNAs in Saccharomyces cerevisiae. DNA and Cell Biology, 10, 613–621.

    Article  CAS  Google Scholar 

  27. Herrmann, J. M., Folsch, H., Neupert, W., & Stuart, R. A. (1994). In D. E. Celis (Ed.), Cell biology handbook, Vol. 1. San Diego, CA: Academic Press, Inc.

  28. Minenko, A. N., Novikova, L. A., Luzikov, V. N., & Kovaleva, I. E. (2008). Import of hybrid forms of CYP11A1 into yeast mitochondria. Biochimica et Biophysica Acta, 1780, 1121–1130.

    Article  CAS  Google Scholar 

  29. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  30. Towbin, H., Staehelin, T., & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceedings of the National Academy of Sciences USA, 76, 4350–4354.

    Article  CAS  Google Scholar 

  31. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of biological chemistry, 193, 265–270.

    CAS  Google Scholar 

  32. Akhrem, A. A., Lapko, V. N., Lapko, A. G., Shkumatov, V. M., & Chashchin, V. L. (1979). Isolation, structural organization and mechanism of action of mitochondrial steroid hydroxylating systems. Acta Biologica et Medica Germanica, 38, 257–273.

    CAS  Google Scholar 

  33. Shashkova, T. V., Luzikov, V. N., & Novikova, L. A. (2006). Coexpression of all constituents of the cholesterol hydroxylase/lyase system in Escherichia coli cells. Biochemistry (Moscow), 71, 810–814.

    Article  CAS  Google Scholar 

  34. Novikova, L. A., Nazarov, P. A., Saveliev, A. S., Drutsa, V. L., Sergeev, V. N., Miller, W. L., et al. (2000). Interaction of catalytic domains in cytochrome P450scc-adrenodoxin reductase—Adrenodoxin fusion protein imported into yeast mitochondria. Biochemistry (Moscow), 65, 1362–1366.

    Article  CAS  Google Scholar 

  35. Vinogradova, A. A., Luzikov, V. N., & Novikova, L. A. (2007). Comparative study of topogenesis of cytochrome P450scc (CYP11A1) and its hybrids with adrenodoxin expressed in Escherichia coli cells. Biochemistry (Moscow), 72, 208–214.

    Article  CAS  Google Scholar 

  36. Rothwell, D. G., Crossley, R., Bridgeman, J. S., Sheard, V., Zhang, Y., Sharp, T. V., et al. (2010). Functional expression of secreted proteins from a bicistronic retroviral cassette based on foot-and-mouth disease virus 2A can be position dependent. Human Gene Therapy, 21, 1631–1637.

    Article  CAS  Google Scholar 

  37. Donnelly, M. L. L., Gani, D., Flint, M., Monaghan, S., & Ryan, M. D. (1997). The cleavage activities of aphthovirus and cardiovirus 2A proteins. Journal of General Virology, 78, 13–21.

    Article  CAS  Google Scholar 

  38. Dechamma, H. J., AshokKumar, C., Nagarajan, G., & Suryanarayana, V. V. (2008). Processing of multimer FMD virus VP1-2A protein expressed in E. coli into monomers. Indian Journal of Experimental Biology, 46, 760–763.

    CAS  Google Scholar 

  39. Park, M., Kang, K., Park, S., Kim, Y. S., Ha, S.-H., Lee, S. W., et al. (2008). Expression of serotonin derivative synthetic genes on a single self-processing polypeptide and the production of serotonin derivatives in microbes. Applied Microbiology and Biotechnology, 81, 43–49.

    Article  CAS  Google Scholar 

  40. Halpin, C., Cooke, S. E., Barakate, A., El Amrani, A., & Ryan, M. D. (1999). Self-processing 2A-polyproteins—A system for co-ordinate expression of multiple proteins in transgenic plants. The Plant Journal, 17, 453–459.

    Article  CAS  Google Scholar 

  41. Szymczak, A., Workman, C., Wang, Y., Vignali, K., Dilioglou, S., Vanin, E., et al. (2004). Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nature Biotechnology, 22, 589–594.

    Article  CAS  Google Scholar 

  42. De Felipe, P., & Ryan, M. D. (2004). Targeting of proteins derived from self-processing polyproteins containing multiple signal sequences. Traffic, 5, 616–626.

    Article  Google Scholar 

  43. Chaplin, P. J., Camon, E. B., Villarreal-Ramos, B., Flint, M., Ryan, M. D., & Collins, R. A. (1999). Production of interleukin-12 as a self-processing 2A polypeptide. Journal of Interferon and Cytokine Research, 19, 235–241.

    Article  CAS  Google Scholar 

  44. Osborn, M. J., Panoskaltsis-Mortari, A., McElmurry, R. T., Bell, S. K., Vignali, D. A., Ryan, M. D., et al. (2005). A picornaviral 2A-like sequence-based tricistronic vector allowing for high-level therapeutic gene expression coupled to a dual-reporter system. Molecular Therapy, 12, 569–574.

    Article  CAS  Google Scholar 

  45. De Felipe, P., Luke, G. A., Hughes, L. E., Gani, D., Halpin, C., & Ryan, M. D. (2006). E unum pluribus: Multiple proteins from a self-processing polyprotein. Trends in Biotechnology, 24, 68–75.

    Article  Google Scholar 

  46. Fang, J., Yi, S., Simmons, A., Tu, G. H., Nguyen, M., Harding, T. C., et al. (2007). An antibody delivery system for regulated expression of therapeutic levels of monoclonal antibodies in vivo. Molecular Therapy, 15, 1153–1159.

    Article  CAS  Google Scholar 

  47. Ralley, L., Enfissi, E. M., Misawa, N., Schuch, W., Bramley, P. M., & Fraser, P. D. (2004). Metabolic engineering of ketocarotenoid formation in higher plants. The Plant Journal, 39, 477–486.

    Article  CAS  Google Scholar 

  48. Lee, D. S., Lee, K. H., Jung, S., Jo, E. J., Han, K. H., & Bae, H. J. (2012). Synergistic effects of 2A-mediated polyproteins on the production of lignocellulose degradation enzymes in tobacco plants. Journal of Experimental Botany, 63, 4797–4810.

    Article  CAS  Google Scholar 

  49. De Felipe, P., Hughes, L. E., Ryan, M. D., & Brown, J. D. (2003). Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide. The Journal of biological chemistry, 278, 11441–11448.

    Article  Google Scholar 

  50. De Felipe, P., Luke, G. A., Brown, J. D., & Ryan, M. D. (2010). Inhibition of 2A-mediated ‘cleavage’ of certain artificial polyproteins bearing N-terminal signal sequences. Biotechnology Journal, 5, 213–223.

    Article  Google Scholar 

  51. Yan, J., Wang, H., Xu, Q., Jain, N., Toxavidis, V., Tigges, J., et al. (2010). Signal sequence is still required in genes downstream of ‘‘autocleaving” 2A peptide for secretary or membrane-anchored expression. Analytical Biochemistry, 399, 144–146.

    Article  CAS  Google Scholar 

  52. Neupert, W., & Herrmann, J. M. (2007). Translocation of proteins into mitochondria. Annual Review of Biochemistry, 76, 723–749.

    Article  CAS  Google Scholar 

  53. Bohnert, M., Pfanner, N., & van der Laan, M. A. (2007). A dynamic machinery for import of mitochondrial precursor proteins. FEBS Letters, 581, 2802–2810.

    Article  CAS  Google Scholar 

  54. Devaux, F., Lelandais, G., Garcia, M., Goussard, S., & Jacq, C. (2010). Posttranscriptional control of mitochondrial biogenesis: Spatio-temporal regulation of the protein import process. FEBS Letters, 584, 4273–4279.

    Article  CAS  Google Scholar 

  55. Lesnik, C., Golani-Armon, A., & Arava, Y. (2015). Localized translation near the mitochondrial outer membrane: An update. RNA Biology, 12, 801–809.

    Article  Google Scholar 

  56. Golani-Armon, A., & Arava, Y. (2016). Localization of nuclear-encoded mRNAs to mitochondria outer surface. Biochemistry (Moscow), 81, 1038–1043.

    Article  CAS  Google Scholar 

  57. Fujiki, M., & Verner, K. (1993). Coupling of cytosolic protein synthesis and mitochondrial protein import in yeast. Evidence for cotranslational import in vivo. The Journal of biological chemistry, 268, 1914–1920.

    CAS  Google Scholar 

  58. Kubeil, C., Yeung, J. C. I., Tuckey, R. C., Rodgers, R. J., & Martin, L. L. (2016). Membrane-mediated protein-protein interactions of cholesterol side-chain cleavage cytochrome P450 with its associated electron transport proteins. ChemPlusChem, 81, 995–1002.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by RFBR, Grant Number: 15-08-00721. We acknowledge A.I. Luneva for her assistance in analyzing protein expression in yeast cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera S. Efimova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimova, V.S., Isaeva, L.V., Makeeva, D.S. et al. Expression of Cholesterol Hydroxylase/Lyase System Proteins in Yeast S. cerevisiae Cells as a Self-Processing Polyprotein. Mol Biotechnol 59, 394–406 (2017). https://doi.org/10.1007/s12033-017-0028-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-017-0028-5

Keywords

Navigation