Skip to main content

Advertisement

Log in

SYBR Green II Dye-Based Real-Time Assay for Measuring Inhibitor Activity Against HIV-1 Reverse Transcriptase

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

There are arrays of in vitro assays to quantify the activity of HIV-1 reverse transcriptase (HIV-1 RT). These assays utilize either chemically customized/labelled nucleotides, or TaqMan probes, or radiolabeled nucleotides/primers. Although several real-time PCR assays exist commercially for measuring the RT activity, which are usually used for quantifying the viral titres, these assays are not optimized for measuring the inhibitory concentrations (IC50) of HIV-1 RT inhibitors. Moreover, a recently established inorganic pyrophosphate-coupled enzyme assay cannot be employed for studying nonphosphorylated nucleoside reverse transcriptase inhibitors (NRTIs). In the present study, we have developed a novel one-step assay with native nucleotide substrates and SYBR Green II dye to determine IC50 values of triphosphorylated NRTIs against HIV-1 RT. Using exact batches of wild-type and mutant RT, and triphosphorylated NRTIs, we showed that our method gave IC50 values for inhibitors similar to that of an earlier published colorimetric assay with BrdUTP substrate (CABS). Our assay should be suitable for high-throughput screening of antiretroviral drugs and could also be suitable for studying drug resistance profiles. Additionally, we also used our assay to study inhibition by AZT in its nonphosphorylated form by supplementing the reaction mixture with necessary kinases and ATP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sarafianos, S. G., Marchand, B., Das, K., Himmel, D. M., Parniak, M. A., Hughes, S. H., & Arnold, E. (2009). Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. Journal of Molecular Biology, 385, 693–713.

    Article  CAS  Google Scholar 

  2. Furman, P. A., Fyfe, J. A., St Clair, M. H., Weinhold, K., Rideout, J. L., Freeman, G. A., et al. (1986). Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase. Proceedings of the National Academy of Sciences of the United States of America, 83, 8333–8337.

    Article  CAS  Google Scholar 

  3. Larder, B. A., & Kemp, S. D. (1989). Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science, 246, 1155–1158.

    Article  CAS  Google Scholar 

  4. Greenberg, M. L., & Cammack, N. (2004). Resistance to enfuvirtide, the first HIV fusion inhibitor. Journal of Antimicrobial Chemotherapy, 54, 333–340.

    Article  CAS  Google Scholar 

  5. Lennerstrand, J., Chu, C. K., & Schinazi, R. F. (2007). Biochemical studies on the mechanism of human immunodeficiency virus type 1 reverse transcriptase resistance to 1-(beta-D-dioxolane)thymine triphosphate. Antimicrobial Agents and Chemotherapy, 51, 2078–2084.

    Article  CAS  Google Scholar 

  6. Reuman, E. C., Bachmann, M. H., Varghese, V., Fessel, W. J., & Shafer, R. W. (2009). Panel of prototypical raltegravir-resistant infectious molecular clones in a novel integrase-deleted cloning vector. Antimicrobial Agents and Chemotherapy, 54, 934–936.

    Article  Google Scholar 

  7. Rhee, S. Y., Taylor, J., Fessel, W. J., Kaufman, D., Towner, W., Troia, P., et al. (2010). HIV-1 protease mutations and protease inhibitor cross-resistance. Antimicrobial Agents and Chemotherapy, 54, 4253–4261.

    Article  CAS  Google Scholar 

  8. Wainberg, M. A. (2012). The need for development of new HIV-1 reverse transcriptase and integrase inhibitors in the aftermath of antiviral drug resistance. Scientifica. doi:10.6064/2012/238278.

    Google Scholar 

  9. Porstmann, T., Meissner, K., Glaser, R., Dopel, S. H., & Sydow, G. (1991). A sensitive non-isotopic assay specific for HIV-1 associated reverse transcriptase. Journal of Virological Methods, 31, 181–188.

    Article  CAS  Google Scholar 

  10. Suzuki, K., Craddock, B. P., Kano, T., & Steigbigel, R. T. (1993). Chemiluminescent enzyme-linked immunoassay for reverse transcriptase, illustrated by detection of HIV reverse transcriptase. Analytical Biochemistry, 210, 277–281.

    Article  CAS  Google Scholar 

  11. Urabe, T., Sano, K., Nakano, T., Odawara, F., Lee, M. H., Otake, T., et al. (1994). Differentiation between human immunodeficiency virus type 1 (HIV-1) and HIV-2 isolates by nonradioisotopic reverse transcriptase-typing assay. Journal of Clinical Microbiology, 32, 1870–1875.

    CAS  Google Scholar 

  12. Arion, D., Kaushik, N., McCormick, S., Borkow, G., & Parniak, M. A. (1998). Phenotypic mechanism of HIV-1 resistance to 3′-azido-3′-deoxythymidine (AZT): increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry, 37, 15908–15917.

    Article  CAS  Google Scholar 

  13. Lee, M. H., Sano, K., Morales, F. E., & Imagawa, D. T. (1987). Sensitive reverse transcriptase assay to detect and quantitate human immunodeficiency virus. Journal of Clinical Microbiology, 25, 1717–1721.

    CAS  Google Scholar 

  14. Eberle, J., & Seibl, R. (1992). A new method for measuring reverse transcriptase activity by ELISA. Journal of Virological Methods, 40, 347–356.

    Article  CAS  Google Scholar 

  15. Lahser, F. C., & Malcolm, B. A. (2004). A continuous nonradioactive assay for RNA-dependent RNA polymerase activity. Analytical Biochemistry, 325, 247–254.

    Article  CAS  Google Scholar 

  16. Ekstrand, D. H., Awad, R. J., Kallander, C. F., & Gronowitz, J. S. (1996). A sensitive assay for the quantification of reverse transcriptase activity based on the use of carrier-bound template and non-radioactive-product detection, with special reference to human-immunodeficiency-virus isolation. Biotechnology and Applied Biochemistry, 23, 95–105.

    CAS  Google Scholar 

  17. Chang, A., Ostrove, J. M., & Bird, R. E. (1997). Development of an improved product enhanced reverse transcriptase assay. Journal of Virological Methods, 65, 45–54.

    Article  CAS  Google Scholar 

  18. Lovatt, A., Black, J., Galbraith, D., Doherty, I., Moran, M. W., Shepherd, A. J., et al. (1999). High throughput detection of retrovirus-associated reverse transcriptase using an improved fluorescent product enhanced reverse transcriptase assay and its comparison to conventional detection methods. Journal of Virological Methods, 82, 185–200.

    Article  CAS  Google Scholar 

  19. André, M., Morgeaux, S., & Fuchs, F. (2000). Quantitative detection of RT activity by PERT assay: feasibility and limits to a standardized screening assay for human vaccines. Biologicals, 28, 67–80.

    Article  Google Scholar 

  20. Zhang, C., Wu, Y., Sun, Y., Hong, C., Xiang, K., Guo, Y., et al. (2010). A novel non-radioactive assay for HIV-RT (RdDp) based on pyrosequencing for high-throughput drug screening. Protein and Cell, 1, 284–290.

    Article  CAS  Google Scholar 

  21. Stålhandske, P., Wang, L., Westberg, S., von Euler, H., Groth, E., Gustafsson, S. A., et al. (2013). Homogeneous assay for real-time and simultaneous detection of thymidine kinase 1 and deoxycytidine kinase activities. Analytical Biochemistry, 432, 155–164.

    Article  Google Scholar 

  22. Huber, H. E., McCoy, J. M., Seehra, J. S., & Richardson, C. C. (1989). Human immunodeficiency virus 1 reverse transcriptase. Template binding, processivity, strand displacement synthesis, and template switching. Journal of Biological Chemistry, 264, 4669–4678.

    CAS  Google Scholar 

  23. Lennerstrand, J., Rytting, A. S., Örvell, C., Gronowitz, J. S., & Källander, C. F. (1996). A combined immunoaffinity purification and reverse transcriptase activity assay useful for crude samples. Analytical Biochemistry, 235, 141–152.

    Article  CAS  Google Scholar 

  24. Hizi, A., Tal, R., Shaharabany, M., & Loya, S. (1991). Catalytic properties of the reverse transcriptases of human immunodeficiency viruses type 1 and type 2. Journal of Biological Chemistry, 266, 6230–6239.

    CAS  Google Scholar 

  25. Zipper, H., Brunner, H., Bernhagen, J., & Vitzthum, F. (2004). Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Research, 32, e103.

    Article  Google Scholar 

  26. Traut, T. W. (1994). Physiological concentrations of purines and pyrimidines. Molecular and Cellular Biochemistry, 140, 1–22.

    Article  CAS  Google Scholar 

  27. Goldschmidt, V., Didierjean, J., Ehresmann, B., Ehresmann, C., Isel, C., & Marquet, R. (2006). Mg2+ dependency of HIV-1 reverse transcription, inhibition by nucleoside analogues and resistance. Nucleic Acids Research, 34, 42–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sarah Lam for her grammatical assistance. This work was supported in part by the Swedish Physicians against AIDS Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Lennerstrand.

Ethics declarations

Conflict of Interest

J. L. acts as a consultant to Cavidi AB. C. K. is currently an employee at Bharat Biotech International Limited. But, these companies are not involved in this project in any ways.

Additional information

Chakradhar Kokkula and Navaneethan Palanisamy have Contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokkula, C., Palanisamy, N., Ericstam, M. et al. SYBR Green II Dye-Based Real-Time Assay for Measuring Inhibitor Activity Against HIV-1 Reverse Transcriptase. Mol Biotechnol 58, 619–625 (2016). https://doi.org/10.1007/s12033-016-9961-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9961-y

Keywords

Navigation