Skip to main content

Advertisement

Log in

Effect of Biofilm Formation by Bacillus subtilis natto on Menaquinone-7 Biosynthesis

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus subtilis natto is the key microorganism for the industrial production of menaquinone-7. The fermentation of this bacterium in static culture is associated with biofilm formation. The objective of this study was to determine the effect of biofilm formation on menaquinone-7 production to develop a suitable bio-reactor for the production of menaquinone-7. In the static culture, menaquinone-7 biosynthesis showed a linear correlation with biofilm formation (R 2 = 0.67) and cell density (R 2 = 0.7). The amount of biofilm, cell density and menaquinone-7 formation were a function of nutrient and processing conditions. Glycerol, soy peptone, and yeast extract mixture and 40 °C were found to be the optimum nutrients and temperature for accelerating both biofilm and menaquinone-7 biosynthesis in static culture. However, glucose, mixture of soy peptone and yeast extract and 45 °C were found to be the optima for cell density. As compared to the static culture, the biofilm formation was significantly inhibited when a shaken fermentation was used. However, shaking caused only a small decrease on menaquinone-7 production. These results demonstrate that the biofilm formation is not essential for menaquinone-7 biosynthesis. This study underlines the feasibility of using large scale stirred fermentation process for menaquinone-7 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O’Toole, G. A., Kaplan, H. B., & Kolter, R. (2000). Biofilm formation as microbial development. Annual Review of Microbiology, 54, 49–79.

    Article  Google Scholar 

  2. Parsek, M. R., & Greenberg, E. P. (2005). Sociomicrobiology: The connections between quorum sensing and biofilms. Trends in Microbiology, 13, 27–33.

    Article  CAS  Google Scholar 

  3. Branda, S. S., Vik, Å., Friedman, L., & Kolter, R. (2005). Biofilms: The matrix revisited. Trends in Microbiology, 13, 20–26.

    Article  CAS  Google Scholar 

  4. Kuchma, S. L., & O’Toole, G. A. (2000). Surface-induced and biofilm-induced changes in gene expression. Current Opinion in Biotechnology, 11, 429–433.

    Article  CAS  Google Scholar 

  5. Khiyami, M. A., Pometto, A. L, I. I. I., & Kennedy, W. J. (2006). Ligninolytic enzyme production by Phanerochaete chrysosporium in plastic composite support biofilm stirred tank bioreactors. Journal of Agriculture and Food Chemistry, 54, 1693–1698.

    Article  CAS  Google Scholar 

  6. Villena, G. K., & Gutierrez-Correa, M. (2006). Production of cellulase by Aspergillus niger biofilms developed on polyester cloth. Letters in Applied Microbiology, 43, 262–268.

    Article  CAS  Google Scholar 

  7. Cheng, K. C., Demirci, A., & Catchmark, J. M. (2010). Effects of plastic composite support and pH profiles on pullulan production in a biofilm reactor. Applied Microbiology and Biotechnology, 86, 853–861.

    Article  CAS  Google Scholar 

  8. Rahman, M. S., Ano, T., & Shoda, M. (2007). Biofilm fermentation of iturin A by a recombinant strain of Bacillus subtilis 168. Journal of Biotechnology, 127, 503–507.

    Article  CAS  Google Scholar 

  9. Dam, H. (1935). The antihemmorhagic vitamin of the chick: Occurrence and chemical nature. Nature, 135, 652–653.

    Article  CAS  Google Scholar 

  10. Meurer, J., Meierhoff, K., & Westhoff, P. (1996). Isolation of high-chlorophyll-fluorescence mutants of Arabidopsis thaliana and their characterisation by spectroscopy, immunoblotting and Northern hybridisation. Planta, 198, 385–396.

    Article  CAS  Google Scholar 

  11. Collins, M. D., & Jones, D. (1981). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiology and Molecular Biology Reviews, 45, 316–354.

    CAS  Google Scholar 

  12. Tsukamoto, Y., Kasai, M., & Kakuda, H. (2001). Construction of a Bacillus subtilis (natto) with high productivity of vitamin K2 (menaquinone-7) by analog resistance. Bioscience, Biotechnology, and Biochemistry, 65, 2007–2015.

    Article  CAS  Google Scholar 

  13. Berenjian, A., Mahanama, R., Talbot, A., Biffin, R., Regtop, H., Valtchev, P., et al. (2011). Efficient media for high menaquinone-7 production: Response surface methodology approach. New Biotech, 28, 665–672.

    Article  CAS  Google Scholar 

  14. Mahanama, R., Berenjian, A., Valtchev, P., Talbot, A., Biffin, R., Regtop, H., et al. (2011). Enhanced production of menaquinone 7 via solid substrate fermentation from Bacillus subtilis. International Journal of Food Engineering, 7, art. no. 17.

    Google Scholar 

  15. Eddy, D. M., Johnston, C. C, Jr, Cummings, S. R., Dawson-Hughes, B., Lindsay, R., Melton, L. J, I. I. I., et al. (1998). Osteoporosis: Review of the evidence for prevention, diagnosis, and treatment and cost-effectiveness analysis, Status report. Osteoporosis International, 8, S1–S82.

    Google Scholar 

  16. Gast, G. C. M., De Roos, N. M., Sluijs, I., Bots, M. L., Beulens, J. W. J., Geleijnse, J. M., et al. (2009). A high menaquinone intake reduces the incidence of coronary heart disease. Nutrition Metabolism Cardiovascular Diseases, 19, 504–510.

    Article  CAS  Google Scholar 

  17. Morikawa, M., Kagihiro, S., Haruki, M., Takano, K., Branda, S., Kolter, R., et al. (2006). Biofilm formation by a Bacillus subtilis strain that produces γ-polyglutamate. Microbiology, 152, 2801–2807.

    Article  CAS  Google Scholar 

  18. O’Toole, G. A., Pratt, L. A., Watnick, P. I., Newman, D. K., Weaver, V. B., & Kolter, R. (1999). Genetic approaches to study of biofilms. Methods in Enzymology, 310, 91–109.

    Article  Google Scholar 

  19. Park, R. S., Mayne, C. S., & Keady, T. W. J. (2002). Silage production and utilization. Wageningen: Wageningen Academic Publishers.

    Google Scholar 

  20. Betancur, G. J. V., & Pereira, N, Jr. (2010). Sugar cane bagasse as feedstock for second generation ethanol production. Part II. Hemicellulose hydrolysate fermentability. Electronic Journal of Biotechnology, 13, 14–15.

    Google Scholar 

  21. Sato, T., Yamadaa, Y., Ohtania, Y., Mitsuib, N., Murasawab, H., & Araki, S. (2001). Production of menaquinone (vitamin K2)-7 by Bacillus subtilis. Journal of Bioscience and Bioengineering, 91, 16–20.

    CAS  Google Scholar 

  22. Richard, A., & Margaritis, A. (2003). Rheology, oxygen transfer, and molecular weight characteristics of poly(glutamic acid) fermentation by Bacillus subtilis. Biotechnology and Bioengineering, 82, 299–305.

    Article  CAS  Google Scholar 

  23. Al, Sonenshein, Hoch, J. A., & Losick, R. (2002). Bacillus subtilis and its closest relatives. Washington, DC: ASM Press.

    Google Scholar 

  24. Tani, Y., Asahi, S., & Yamada, H. (1984). Vitamin K2 (menaquinone): Screening of producing microorganisms and production by Flavobacterium meningosepticum. Journal of Fermentation Technology, 62, 321–327.

    CAS  Google Scholar 

  25. Zohora, U. S., Rahman, M. S., & Ano, T. (2009). Biofilm formation and lipopeptide antibiotic iturin A production in different peptone media. Journal of Environmental Sciences, 21, S24–S27.

    Article  Google Scholar 

  26. Meganathan, R. (2001). Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): A perspective on enzymatic mechanisms. Vitamins and Hormones, 61, 173–218.

    Article  CAS  Google Scholar 

  27. Bentley, R., & Meganathan, R. (1982). Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiological Reviews, 46, 241–280.

    CAS  Google Scholar 

  28. Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 8, 881–890.

    Article  Google Scholar 

  29. Hernandez, M. E., & Newman, D. K. (2001). Extracellular electron transfer. Cellular and Molecular Life Sciences, 58, 1562–1571.

    Article  CAS  Google Scholar 

  30. Spormann, A. M. (2008). Physiology of microbes in biofilms. Current Topics in Microbiology and Immunology, 322, 17–36.

    Article  CAS  Google Scholar 

  31. Stewart, P. S., & Franklin, M. J. (2008). Physiological heterogeneity in biofilms. Nature Reviews Microbiology, 6, 199–210.

    Article  CAS  Google Scholar 

  32. Rani, S. A., Pitts, B., Beyenal, H., Veluchamy, R. A., Lewandowski, Z., Davison, W. M., et al. (2007). Spatial patterns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal diverse physiological states. Journal of Bacteriology, 189, 4223–4233.

    Article  CAS  Google Scholar 

  33. Karel, S. F., Libicki, S. B., & Robertson, C. R. (1985). The immobilization of whole cells: Engineering principles. Chemical Engineering Science, 40, 1321–1354.

    Article  CAS  Google Scholar 

  34. Torres, C., Lenon, G., Craperi, D., Wilting, R., & Blanco, Á. (2011). Enzymatic treatment for preventing biofilm formation in the paper industry. Applied Microbiology and Biotechnology, 92, 95–103.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Australian Research Council and Agricure Scientific Organics through the ARC Linkage Project (LP100100347). Authors are grateful to Prof. George A. O’Toole (Dartmouth Medical School), Prof. Jeffrey Kaplan (University of Medicine and Dentistry of New Jersey), and Prof. Ali Demirci (The Pennsylvania State University) for their helpful suggestions on biofilm studies. We also acknowledge the technical support of Ms Elizabeth Dobrinsky, analytical support by Mr Peter Valtchev and SEM analysis by Mr Ali Negahi Shirazi from the University of Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydin Berenjian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berenjian, A., Chan, N.LC., Mahanama, R. et al. Effect of Biofilm Formation by Bacillus subtilis natto on Menaquinone-7 Biosynthesis. Mol Biotechnol 54, 371–378 (2013). https://doi.org/10.1007/s12033-012-9576-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9576-x

Keywords

Navigation