Skip to main content
Log in

Strain Engineering by Genome Mass Transfer: Efficient Chromosomal Trait Transfer Method Utilizing Donor Genomic DNA and Recipient Recombineering Hosts

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Strain engineering, like cloning, is a fundamental technology used to confer new traits onto existing strains. While effective methods for trait development through gene modification within strains have been developed, methods for trait transfer between Escherichia coli strains to create complex strains are needed. We report herein the development of genome mass transfer (GMT), a broadly applicable new strain engineering methodology enabling rapid trait transfer from a donor strain into a recombineering gene-expressing recipient strain. GMT utilizes electroporation of donor chromosomal DNA into a recombineering recipient cell for precise trait transfer. GMT transfer of traits between E. coli strains can be used to rapidly assemble new strains incorporating combinations of marked gene knockouts, for example, utilizing the existing E. coli K-12 Keio gene knockout collection as source target genes. Optional use of random primed isothermal amplified DNA eliminates the need for initial DNA purification, affording high throughput application. This allows unprecedented simplicity and speed for rational design engineering of complex phenotypes in industrial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alper, H., Miyaoku, K., & Stephanopoulos, G. (2005). Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nature Biotechnology, 5, 612–616.

    Article  Google Scholar 

  2. Thomason, L. C., Costantino, M., & Court, D. L. (2007). E. coli genome manipulation by P1 transduction. Current protocols in molecular biology (Chapter 1, Unit 1.17). NY: Wiley.

  3. Sternberg, N., & Hoess, R. (1983). The molecular genetics of bacteriophage P1. Annual Review of Genetics, 17, 123–154.

    Article  CAS  Google Scholar 

  4. Goodson, M., & Rowbury, R. J. (1987). Altered phage P1 attachment to strains of Escherichia coli carrying the plasmid ColV, I-K94. Journal of General Virology, 68, 1785–1789.

    Article  CAS  Google Scholar 

  5. McKane, M., & Milkman, R. (1995). Transduction, restriction and recombination patterns in Escherichia coli. Genetics, 139, 35–43.

    CAS  Google Scholar 

  6. Bachmann, B. J. (1990). Linkage map of Escherichia coli K-12, Edition 8. Microbiological Reviews, 54, 130–197.

    CAS  Google Scholar 

  7. Murphy, K. C. (1998). Use of bacteriophage λ recombination functions to promote gene replacement in Escherichia coli. Journal of Bacteriology, 180, 2063–2071.

    CAS  Google Scholar 

  8. Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 97, 6640–6645.

    Article  CAS  Google Scholar 

  9. Yu, D., Ellis, H. M., Lee, E. C., Jenkins, N. A., Copeland, N. G., & Court, D. L. (2000). An efficient recombination system for chromosome engineering in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 97, 5978–5983.

    Article  CAS  Google Scholar 

  10. Zhang, Y., Buchholz, F., Muyrers, J. P., & Stewart, A. F. (1998). A new logic for DNA engineering using recombination in Escherichia coli. Nature Genetics, 20, 123–128.

    Article  CAS  Google Scholar 

  11. Court, D. L., Sawitzke, J. A., & Thomason, L. C. (2002). Genetic engineering using homologous recombination. Annual Review of Genetics, 36, 361–388.

    Article  CAS  Google Scholar 

  12. Sarov, M., Schneider, S., Pozniakovski, A., Roquev, A., Ernst, S., Zhang, Y., et al. (2006). A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nature Methods, 3, 839–844.

    Article  CAS  Google Scholar 

  13. Datta, S., Costantino, N., & Court, D. L. (2006). A set of recombineering plasmids for gram-negative bacteria. Gene, 379, 109–115.

    Article  CAS  Google Scholar 

  14. Wang, J., Sarov, M., Rientjes, J., Fu, J., Hollak, H., Kranz, H., et al. (2006). An improved recombineering approach by adding RecA to lambda Red recombination. Molecular Biotechnology, 32, 43–53.

    Article  Google Scholar 

  15. Baba, T., Ara, T., Haseqawa, M., Takai, Y., Okumura, Y., Baba, M., et al. (2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular Systems Biology, 2, 2006.0008.

  16. Gerdes, S. Y., Scholle, M. D., Campbell, J. W., Balazsi, G., Ravasz, E., Daugherty, M. D., et al. (2003). Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. Journal of Bacteriology, 185, 5673–5684.

    Article  CAS  Google Scholar 

  17. Kang, Y., Durfee, T., Glasner, J. D., Qiu, Y., Frish, D., Winterberg, K. M., et al. (2004). Systematic mutagenesis of the Escherichia coli genome. Journal of Bacteriology, 186, 4921–4930.

    Article  CAS  Google Scholar 

  18. Patnaik, R. (2008). Engineering complex phenotypes in industrial strains. Biotechnology Progress, 24, 38–47.

    Article  CAS  Google Scholar 

  19. Carnes, A. E., Hodgson, C. P., & Williams, J. A. (2007). Improved E. coli plasmid production strains. US Patent Application 60931465.

  20. Williams, J. A. (2008). Processes for improved strain engineering. World Patent Application WO2008153731.

  21. Williams, J. A. (2008). Vectors and methods for genetic immunization. World Patent Application WO2008153733.

  22. Haldimann, A., & Wanner, B. L. (2001). Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. Journal of Bacteriology, 183, 6384–6393.

    Article  CAS  Google Scholar 

  23. Imam, A. M., Patrinos, G. P., de Krom, M., Bottardi, S., Janssens, R. J., Katsantoni, E., et al. (2000). Modification of human β-globin locus PAC clones by homologous recombination in Escherichia coli. Nucleic Acids Research, 28, e65.

    Article  CAS  Google Scholar 

  24. Ausubel, F. M. (1998). Current protocols in molecular biology. NY: Wiley.

    Google Scholar 

  25. Jia, X., Kostal, J., & Claypool, J. A. (2006). Controlled lysis of bacteria. US Patent Application 2006/0040393.

  26. Choi, K. H., Kumar, A., & Schweizer, H. P. (2005). A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: Application for DNA fragment transfer between chromosomes and plasmid transformation. Journal of Microbiol Methods, 64, 391–397.

    Article  Google Scholar 

  27. Charles, T. C., Doty, S. L., & Nester, E. W. (1994). Construction of Agrobacterium strains by electroporation of genomic DNA and its utility in analysis of chromosomal virulence mutations. Applied and Environmental Microbiology, 60, 4192–4194.

    CAS  Google Scholar 

  28. Cohen, A., & Clark, A. J. (1986). Synthesis of linear plasmid multimers in Escherichia coli K-12. Journal of Bacteriology, 167, 327–335.

    CAS  Google Scholar 

  29. De Vito, J. A. (2008). Recombineering with tolC as a selectable/counter-selectable marker: remodeling the rRNA operons of Escherichia coli. Nucleic Acids Research, 36, e4.

    Article  Google Scholar 

  30. Wong, Q. N., Ng, V. C., Lin, M. C., Kung, H. F., Chan, D., & Huang, J. D. (2005). Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli. Nucleic Acids Research, 33, e59.

    Article  Google Scholar 

  31. Warming, S., Costantino, N., Court, D. L., Jenkins, N. A., & Copeland, N. G. (2005). Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Research, 33, e36.

    Article  Google Scholar 

  32. Wang, S., Zhao, Y., Leiby, M., & Zhu, J. (2009). A new positive/negative selection scheme for precise BAC recombineering. Molecular Biotechnology, 42, 110–116.

    Article  CAS  Google Scholar 

  33. Murphy, K. C., & Campellone, K. G. (2003). Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic E. coli. BMC Molecular Biology, 4, 11.

    Article  Google Scholar 

  34. Poteete, A. R. (2001). What makes the bacteriophage λ Red system useful for genetic engineering: Molecular mechanism and biological function. FEMS Microbiology Letters, 201, 9–14.

    CAS  Google Scholar 

  35. Baitin, D. M., Bakhlanova, I. V., Kil, Y. V., Cox, M. M., & Lanzov, V. A. (2006). Distinguishing characteristics of hyperrecombinogenic RecA protein from Pseudomonas aeruginosa acting in Escherichia coli. Journal of Bacteriology, 188, 5812–5820.

    Article  CAS  Google Scholar 

  36. Lambertsen, L., Sternberg, C., & Molin, S. (2004). Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environmental Microbiology, 6, 726–732.

    Article  CAS  Google Scholar 

  37. Cosloy, D. S., & Oishi, M. (1973). Genetic transformation in Escherichia coli K12. Proceedings of the National Academy of Sciences of the United States of America, 70, 84–87.

    Article  CAS  Google Scholar 

  38. Yu, B. J., Sung, B. H., Koob, M. D., Lee, C. H., Lee, J. H., Lee, W. S., et al. (2002). Minimalization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nature Biotechnology, 20, 1018–1023.

    Article  CAS  Google Scholar 

  39. Alper, H., & Stephanopoulos, G. (2008). Uncovering the gene knockout landscape for improved lycopene production in E. coli. Applied Microbiology and Biotechnology, 78, 801–810.

    Article  CAS  Google Scholar 

  40. Meynial-Salles, I., Cervin, M. A., & Soucaille, P. (2005). New tool for metabolic pathway engineering in Escherichia coli: One-step method to modulate expression of chromosomal genes. Applied and Environmental Microbiology, 71, 2140–2144.

    Article  CAS  Google Scholar 

  41. Braatsch, S., Helmark, S., Kranz, H., Koebmann, B., & Jensen, P. R. (2008). Escherichia coli strains with promoter libraries constructed by Red/ET recombination pave the way for transcriptional fine-tuning. Biotechniques, 45, 335–337.

    Article  CAS  Google Scholar 

  42. Posfai, G., Plunkett, G., I. I. I., Feher, T., Frisch, D., Keil, G. M., Umenhoffer, K., et al. (2006). Emergent properties of reduced-genome Escherichia coli. Science, 312, 1044–1046.

    Article  CAS  Google Scholar 

  43. Fu, J., Wenzel, S. C., Perlova, O., Wang, J., Gross, F., Tang, Z., et al. (2008). Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Research, 36, e113.

    Article  Google Scholar 

  44. Costantino, N., & Court, D. L. (2003). Enhanced levels of λ Red-mediated recombinants in mismatch repair mutants. Proceedings of the National Academy of Sciences of the United States of America, 100, 15748–15753.

    Article  CAS  Google Scholar 

  45. Van Kessel, J. C., & Hatfull, G. F. (2007). Recombineering in Mycobacterium tuberculosis. Nature Methods, 4, 147–152.

    Article  Google Scholar 

  46. Datta, S., Costantino, N., Zhou, X., & Court, D. L. (2008). Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages. Proceedings of the National Academy of Science, 105, 1626–1631.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank Kim Hansen for technical assistance with plasmid preparations and PCR screening, and Jean-Pierre Bouche for kindly providing strain JS1910 containing ydeA (miniTet, tetR).

Funding

This study was supported by the National Institute of Health (R44GM072141 to J.A.W.).

Conflict of interest statement

J.A.W., J.L., and C.P.H. have an equity interest in Nature Technology Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, J.A., Luke, J. & Hodgson, C. Strain Engineering by Genome Mass Transfer: Efficient Chromosomal Trait Transfer Method Utilizing Donor Genomic DNA and Recipient Recombineering Hosts. Mol Biotechnol 43, 41–51 (2009). https://doi.org/10.1007/s12033-009-9177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9177-5

Keywords

Navigation