Abstract
Cancer remains a leading cause of mortality globally, characterized by the uncontrolled proliferation of abnormal cells, invasion of healthy tissues, and potential metastasis. Natural compounds have become a focus in cancer research due to their potential therapeutic roles. Among these, fisetin, a dietary flavonoid, demonstrates notable anti-cancer properties through various molecular mechanisms. This review evaluates the chemoprotective and chemotherapeutic potential of fisetin, focusing on its mechanisms of action against cancer and its capacity to enhance cancer treatment. A systematic literature search was conducted across PubMed, Web of Science, and Scopus databases using keywords related to fisetin and cancer. The review synthesizes findings from in vitro and in vivo studies examining fisetin’s effects on signaling pathways, apoptosis induction, oxidative stress modulation, and synergistic potential with chemotherapeutic agents. Fisetin has shown the ability to suppress tumor growth and metastasis by modulating critical signaling pathways, including PI3K/Akt/mTOR, NF-κB, and MAPK. It induces apoptosis in cancer cells through mitochondrial and endoplasmic reticulum stress responses and demonstrates antioxidative properties by reducing reactive oxygen species. Additionally, fisetin enhances the efficacy of conventional chemotherapies, indicating its role as a potential adjuvant in cancer treatment. Fisetin presents a promising natural compound with diverse anti-cancer effects, impacting cell cycle arrest, apoptosis, and oxidative stress pathways. Further clinical studies are warranted to fully elucidate its therapeutic potential and to optimize its delivery for improved bioavailability in cancer patients.






Similar content being viewed by others
Data availability
No datasets were generated or analyzed during the current study.
Abbreviations
- 5-FU:
-
5-Fluorouracil
- Akt:
-
Protein kinase B
- ALT:
-
Alanine transaminase
- AMPK:
-
Adenosine monophosphate-activated protein kinase
- AP-1:
-
Activator protein 1
- AST:
-
Aspartate transaminase
- ATM:
-
Ataxia telangiectasia mutated
- AUC:
-
Area under the curve
- BaP:
-
Benzo(a)pyrene
- BAX:
-
Bcl-2-associated X protein
- Bcl-2:
-
B-cell lymphoma 2
- Bcl-xl:
-
B-cell lymphoma-extra large
- Bcl2l2:
-
B-cell lymphoma-2-like 2
- BIRC8:
-
Baculoviral IAP repeat-containing 8
- BUB1:
-
Budding uninhibited by benzimidazoles 1
- BubR1:
-
Budding uninhibited by benzimidazoles 1-related 1
- CAT:
-
Catalase
- CDK:
-
Cyclin-dependent kinase
- Cdc2:
-
Cell division cycle 2
- Cdc25:
-
Cell division cycle 25
- Cenp-F:
-
Centromere protein F
- Chk1:
-
Checkpoint kinase 1
- COX-2:
-
Cyclooxygenase-2
- CRP:
-
C-reactive protein
- DMBA:
-
7,12-Dimethylbenz[a]anthracene
- DNA:
-
Deoxyribonucleic acid
- DR4/DR5:
-
Death receptor 4 / Death receptor 5
- ELISA:
-
Enzyme-linked immunosorbent assay
- eNOS:
-
Endothelial nitric oxide synthase
- ERK:
-
Extracellular signal-regulated kinase
- FAK:
-
Focal adhesion kinase
- FADD:
-
Fas-associated death domain
- GADD45A/B:
-
Growth arrest and DNA damage-inducible proteins
- GPx:
-
Glutathione peroxidase
- GRP78:
-
Glucose-regulated protein 78
- GSK-3β:
-
Glycogen synthase kinase 3 beta
- GSH:
-
Glutathione
- GSSG:
-
Oxidized glutathione
- GST:
-
Glutathione-S-transferase
- H2O2:
-
Hydrogen peroxide
- HO-1:
-
Heme oxygenase-1
- HRAS1/HRAS2:
-
Harvey rat sarcoma viral oncogenes
- HSF-1:
-
Heat shock factor 1
- IC50:
-
Inhibitory concentration 50%
- IGF1R:
-
Insulin-like growth factor 1 receptor
- IL-1β:
-
Interleukin-1 beta
- IL-6:
-
Interleukin-6
- IL-8:
-
Interleukin-8
- IL-10:
-
Interleukin-10
- JNK:
-
C-Jun N-terminal kinase
- LLC:
-
Lewis lung carcinoma
- MAPK:
-
Mitogen-activated protein kinase
- Mcl-1:
-
Myeloid cell leukemia sequence 1
- MEK1/2:
-
Mitogen-activated protein kinase kinase 1/2
- MMP2/9:
-
Matrix metalloproteinases 2 and 9
- Mitf:
-
Microphthalmia-associated transcription factor
- mTOR:
-
Mammalian target of rapamycin
- MTT assay:
-
Diphenyl-2H-tetrazolium bromide assay
- NADPH:
-
Nicotinamide adenine dinucleotide phosphate
- NF-κB:
-
Nuclear factor kappa B
- NHEKs:
-
Normal human epidermal keratinocytes
- Nrf2:
-
Nuclear factor erythroid 2-related factor 2
- NQO1:
-
NAD(P)H quinone dehydrogenase 1
- OSCC:
-
Oral squamous cell carcinoma
- PARP:
-
Poly (ADP-ribose) polymerase
- PCNA:
-
Proliferating cell nuclear antigen
- PI3K:
-
Phosphatidylinositol-3-kinase
- PKC:
-
Protein kinase C
- PSA:
-
Prostate-specific antigen
- p53:
-
Tumor protein p53
- RB-1:
-
Retinoblastoma 1
- rRNA:
-
Ribosomal RNA
- ROS:
-
Reactive oxygen species
- SOD:
-
Superoxide dismutase
- TGF-β1:
-
Transforming growth factor beta 1
- TNF-α:
-
Tumor necrosis factor alpha
- TSC1/2:
-
Tuberous sclerosis complex 1 and 2
- TUNEL assay:
-
Terminal deoxynucleotidyl transferase dUTP nick-end labeling assay
- uPA:
-
Urokinase-type plasminogen activator
- VEGF:
-
Vascular endothelial growth factor
- Wnt:
-
Wingless-related integration site
References
Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149:778–89.
Khani Y, Pourgholam-Amiji N, Afshar M, Otroshi O, Sharifi-Esfahani M, Sadeghi-Gandomani H, Vejdani M, Salehiniya H. Tobacco smoking and cancer types: a review. Biomed Res Ther. 2018;5:2142–59.
Zamanian MY, Taheri N, Ramadan MF, Mustafa YF, Alkhayyat S, Sergeevna KN, Alsaab HO, Hjazi A, Molavi Vasei F, Daneshvar S. A comprehensive view on the fisetin impact on colorectal cancer in animal models: focusing on cellular and molecular mechanisms. Anim Models Exp Med. 2024;7(5):591–605. https://doi.org/10.1002/ame2.12476.
Patra S, Pradhan B, Nayak R, Behera C, Das S, Patra SK, Efferth T, Jena M, Bhutia SK. Dietary polyphenols in chemoprevention and synergistic effect in cancer: clinical evidences and molecular mechanisms of action. Phytomedicine. 2021;90:153554.
Prasher P, Fatima R, Sharma M, Tynybekov B, Alshahrani AM, Ateşşahin DA, Sharifi-Rad J, Calina D. Honokiol and its analogues as anticancer compounds: current mechanistic insights and structure-activity relationship. Chem Biol Interact. 2023;386:110747.
Kitic D, Miladinovic B, Randjelovic M, et al. Anticancer and chemopreventive potential of Morinda citrifolia L. bioactive compounds: a comprehensive update. Phyther Res. 2024;38:1932–50.
Ali M, Singh P, Singh L, Kumar S, Scholar PG, Professor A, Professor A. Phytochemical constituents and pharmacological activities, profile of morinda citrifolia: a review. World J Pharm Res. 2020;9:422.
Qnais E, Alqudah A, Bseiso Y, Gammoh O, Wedyan M, Alotaibi B. Exploring the therapeutic potential of fisetin: a comprehensive study on its anti-nociceptive and anti-inflammatory effects. Eur Rev Med Pharmacol Sci. 2023;27(21):10773–84.
Ciapała K, Rojewska E, Pawlik K, Ciechanowska A, Mika J. Analgesic effects of fisetin, peimine, astaxanthin, artemisinin, bardoxolone methyl and 740 Y-P and their influence on opioid analgesia in a mouse model of neuropathic pain. Int J Mol Sci. 2023;24:9000.
Grynkiewicz G, Demchuk OM. New perspectives for fisetin. Front Chem. 2019. https://doi.org/10.3389/fchem.2019.00697.
He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther. 2021;6:425.
Lu X, Jung J, Cho HJ, Lim DY, Lee HS, Chun HS, Kwon DY, Park JH. Fisetin inhibits the activities of cyclin-dependent kinases leading to cell cycle arrest in HT-29 human colon cancer cells. J Nutr. 2005;135:2884–90.
Sundarraj K, Raghunath A, Perumal E. A review on the chemotherapeutic potential of fisetin: in vitro evidences. Biomed Pharmacother. 2018;97:928–40.
Kashyap D, Sharma A, Sak K, Tuli HS, Buttar HS, Bishayee A. Fisetin: a bioactive phytochemical with potential for cancer prevention and pharmacotherapy. Life Sci. 2018;194:75–87.
Kumar RM, Kumar H, Bhatt T, Jain R, Panchal K, Chaurasiya A, Jain V. Fisetin in cancer: attributes, developmental aspects, and nanotherapeutics. Pharmaceuticals. 2023;16:196.
Maurya BK, Trigun SK. Fisetin modulates antioxidant enzymes and inflammatory factors to inhibit aflatoxin-B1 Induced hepatocellular carcinoma in rats. Oxid Med Cell Longev. 2016;2016:1–9.
Chen J-K, Peng S-F, Lai KC, Liu H-C, Huang Y-P, Lin C-C, Huang A-C, Chueh F-S, Chung J-G. Fisetin suppresses human osteosarcoma U-2 OS cell migration and invasion via affecting FAK, uPA and NF-ĸB signaling pathway in vitro. In Vivo. 2019;33:801–10.
Chiruta C, Schubert D, Dargusch R, Maher P. Chemical modification of the multitarget neuroprotective compound fisetin. J Med Chem. 2012;55:378–89.
Kimira M, Arai Y, Shimoi K, Watanabe S. Japanese intake of flavonoids and isoflavonoids from foods. J Epidemiol. 1998;8:168–75.
Stahlhut SG, Siedler S, Malla S, Harrison SJ, Maury J, Neves AR, Forster J. Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli. Metab Eng. 2015;31:84–93.
Tsunekawa R, Hanaya K, Higashibayashi S, Sugai T. Synthesis of fisetin and 2′,4′,6′-trihydroxydihyrochalcone 4′- O -β-neohesperidoside based on site-selective deacetylation and deoxygenation. Biosci Biotechnol Biochem. 2018;82:1316–22.
Pandey RP, Parajuli P, Chu LL, Kim S-Y, Sohng JK. Biosynthesis of a novel fisetin glycoside from engineered Escherichia coli. J Ind Eng Chem. 2016;43:13–9.
Wang X, Yang J, Ding B, et al. Design, synthesis and bioactivity evaluation of fisetin derivatives as potential anti-inflammatory agents against LPS-induced acute lung injury. Bioorg Med Chem. 2021;49:116456.
Szymczak J, Cielecka-Piontek J. Fisetin—in search of better bioavailability—from macro to nano modifications: a review. Int J Mol Sci. 2023;24:14158.
Kumar H, Chand P, Pachal S, Mallick S, Jain R, Madhunapantula SV, Jain V. Fisetin-loaded nanostructured lipid carriers: formulation and evaluations against advanced and metastatic melanoma. Mol Pharm. 2023;20:6035–55.
Krishnakumar IM, Jaja-Chimedza A, Joseph A, Balakrishnan A, Maliakel B, Swick A. Enhanced bioavailability and pharmacokinetics of a novel hybrid-hydrogel formulation of fisetin orally administered in healthy individuals: a randomised double-blinded comparative crossover study. J Nutr Sci. 2022;11:e74.
Shia C-S, Tsai S-Y, Kuo S-C, Hou Y-C, Chao P-DL. Metabolism and pharmacokinetics of 3,3′,4′,7-tetrahydroxyflavone (Fisetin), 5-hydroxyflavone, and 7-hydroxyflavone and antihemolysis effects of fisetin and its serum metabolites. J Agric Food Chem. 2009;57:83–9.
Lall RK, Adhami VM, Mukhtar H. Dietary flavonoid fisetin for cancer prevention and treatment. Mol Nutr Food Res. 2016;60:1396–405.
Touil YS, Seguin J, Scherman D, Chabot GG. Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinoma-bearing mice. Cancer Chemother Pharmacol. 2011;68:445–55.
Pandey A, Trigun SK. Fisetin induces apoptosis in colorectal cancer cells by suppressing autophagy and down-regulating nuclear factor erythroid 2-related factor 2 (Nrf2). J Cell Biochem. 2023;124:1289–308.
Mukhtar E, Adhami VM, Sechi M, Mukhtar H. Dietary flavonoid fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells. Cancer Lett. 2015;367:173–83.
Salmela A-L, Pouwels J, Varis A, Kukkonen AM, Toivonen P, Halonen PK, Perälä M, Kallioniemi O, Gorbsky GJ, Kallio MJ. Dietary flavonoid fisetin induces a forced exit from mitosis by targeting the mitotic spindle checkpoint. Carcinogenesis. 2009;30:1032–40.
Xiao Y, Liu Y, Gao Z, Li X, Weng M, Shi C, Wang C, Sun L. Fisetin inhibits the proliferation, migration and invasion of pancreatic cancer by targeting PI3K/AKT/mTOR signaling. Aging (Albany NY). 2021;13:24753–67.
Sechi M, Syed DN, Pala N, Mariani A, Marceddu S, Brunetti A, Mukhtar H, Sanna V. Nanoencapsulation of dietary flavonoid fisetin: Formulation and in vitro antioxidant and α-glucosidase inhibition activities. Mater Sci Eng C. 2016;68:594–602.
Yadav N, Francis AP, Chandramohan S, Bhat SA, Rajagopalan R. Enhancing the fisetin efficacy through encapsulation with polymannose and nanotization for effective anticancer therapy towards breast cancer. J Nanoparticle Res. 2024;26:83.
Ravichandran N, Suresh G, Ramesh B, Manikandan R, Choi YW, Vijaiyan Siva G. Fisetin modulates mitochondrial enzymes and apoptotic signals in benzo(a)pyrene-induced lung cancer. Mol Cell Biochem. 2014;390:225–34.
Hassan SSU, Samanta S, Dash R, Karpiński TM, Habibi E, Sadiq A, Ahmadi A, Bungau S. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: focus on the role of oxidative stress. Front Pharmacol. 2022. https://doi.org/10.3389/fphar.2022.1015835.
Böhl M, Tietze S, Sokoll A, Madathil S, Pfennig F, Apostolakis J, Fahmy K, Gutzeit HO. Flavonoids affect actin functions in cytoplasm and nucleus. Biophys J. 2007;93:2767–80.
Tailor D, Mishra D, Malhotra SV, Singh RP. Abstract 4617: Fisetin, a multi-kinase inhibitor enhances chemotherapeutic sensitivity in head and neck cancer. Cancer Res. 2024;84:4617.
Adan A, Baran Y. Fisetin and hesperetin induced apoptosis and cell cycle arrest in chronic myeloid leukemia cells accompanied by modulation of cellular signaling. Tumor Biol. 2016;37:5781–95.
Syed DN, Adhami VM, Khan N, Khan MI, Mukhtar H. Exploring the molecular targets of dietary flavonoid fisetin in cancer. Semin Cancer Biol. 2016;40–41:130–40.
Murtaza I, Adhami VM, Bin HB, Saleem M, Mukhtar H. Fisetin, a natural flavonoid, targets chemoresistant human pancreatic cancer AsPC-1 cells through DR3-mediated inhibition of NF-κB. Int J Cancer. 2009;125:2465–73.
Chiarini F, Evangelisti C, McCubrey JA, Martelli AM. Current treatment strategies for inhibiting mTOR in cancer. Trends Pharmacol Sci. 2015;36:124–35.
Khan N, Jajeh F, Eberhardt EL, et al. Fisetin and 5-fluorouracil: effective combination for PIK3CA -mutant colorectal cancer. Int J Cancer. 2019;145:3022–32.
Sivamaruthi BS, Kumar Nallasamy P, Suganthy N, Kesika P, Chaiyasut C. Pharmaceutical and biomedical applications of starch-based drug delivery system: a review. J Drug Deliv Sci Technol. 2022;77:103890.
Pal HC, Sharma S, Strickland LR, Katiyar SK, Ballestas ME, Athar M, Elmets CA, Afaq F. Fisetin inhibits human melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways. PLoS ONE. 2014;9:e86338.
Ying T-H, Yang S-F, Tsai S-J, Hsieh S-C, Huang Y-C, Bau D-T, Hsieh Y-H. Fisetin induces apoptosis in human cervical cancer HeLa cells through ERK1/2-mediated activation of caspase-8-/caspase-3-dependent pathway. Arch Toxicol. 2012;86:263–73.
Sung B, Pandey MK, Aggarwal BB. Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-κB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IκBα kinase activatio. Mol Pharmacol. 2007;71:1703–14.
McCann SE, Hootman KC, Weaver AM, Thompson LU, Morrison C, Hwang H, Edge SB, Ambrosone CB, Horvath PJ, Kulkarni SA. Dietary intakes of total and specific lignans are associated with clinical breast tumor characteristics. J Nutr. 2012;142:91–8.
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013;2013:1–16.
Naeimi AF, Alizadeh M. Antioxidant properties of the flavonoid fisetin: an updated review of in vivo and in vitro studies. Trends Food Sci Technol. 2017;70:34–44.
Lee SE, Il JS, Yang H, Park C, Jin Y, Park YS. Fisetin induces Nrf2-mediated HO-1 expression through PKC-δ and p38 in human umbilical vein endothelial cells. J Cell Biochem. 2011;112:2352–60.
Jang KY, Jeong S-J, Kim S-H, Jung JH, Kim J-H, Koh W, Chen C-Y, Kim S-H. Activation of reactive oxygen species/AMP activated protein kinase signaling mediates fisetin-induced apoptosis in multiple myeloma U266 cells. Cancer Lett. 2012;319:197–202.
Bhat TA, Nambiar D, Pal A, Agarwal R, Singh RP. Fisetin inhibits various attributes of angiogenesis in vitro and in vivo–implications for angioprevention. Carcinogenesis. 2012;33:385–93.
Nitti M, Ivaldo C, Traverso N, Furfaro AL. Clinical significance of heme oxygenase 1 in tumor progression. Antioxidants. 2021;10:789.
Sarvarian P, Samadi P, Gholipour E, Khodadadi M, Pourakbari R, Akbarzadelale P, Shamsasenjan K. Fisetin-loaded grape-derived nanoparticles improve anticancer efficacy in MOLT-4 cells. Biochem Biophys Res Commun. 2023;658:69–79.
Kammerud SC, Metge BJ, Elhamamsy AR, Weeks SE, Alsheikh HA, Mattheyses AL, Shevde LA, Samant RS. Novel role of the dietary flavonoid fisetin in suppressing rRNA biogenesis. Lab Investig. 2021;101:1439–48.
Lu H, Chang DJ, Baratte B, Meijer L, Schulze-Gahmen U. Crystal structure of a human cyclin-dependent kinase 6 complex with a flavonol inhibitor, fisetin. J Med Chem. 2005;48:737–43.
Ravichandran N, Suresh G, Ramesh B, Vijaiyan Siva G. Fisetin, a novel flavonol attenuates benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Food Chem Toxicol. 2011;49:1141–7.
Macgregor JT, Jurd L. Mutagenicity of plant flavonoids: structural requirements for mutagenic activity in Salmonella typhimurium. Mutat Res Mutagen Relat Subj. 1978;54:297–309.
Sun Y, Qin H, Zhang H, Feng X, Yang L, Hou D-X, Chen J. Fisetin inhibits inflammation and induces autophagy by mediating PI3K/AKT/mTOR signaling in LPS-induced RAW264.7 cells. Food Nutr Res. 2021. https://doi.org/10.29219/fnr.v65.6355.
Kang KA, Piao MJ, Hyun JW. Fisetin induces apoptosis in human nonsmall lung cancer cells via a mitochondria-mediated pathway. Vitr Cell Dev Biol Anim. 2015;51:300–9.
Rengarajan T, Yaacob NS. The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways. Eur J Pharmacol. 2016;789:8–16.
Kubina R, Iriti M, Kabała-Dzik A. Anticancer potential of selected flavonols: fisetin, kaempferol, and quercetin on head and neck cancers. Nutrients. 2021;13:845.
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther. 2024;9:53.
Li J, Cheng Y, Qu W, Sun Y, Wang Z, Wang H, Tian B. Fisetin, a dietary flavonoid, induces cell cycle arrest and apoptosis through activation of p53 and inhibition of NF-Kappa B pathways in bladder cancer cells. Basic Clin Pharmacol Toxicol. 2011;108:84–93.
Nagai K, Takahashi Y, Mikami I, Fukusima T, Oike H, Kobori M. The hydroxyflavone, fisetin, suppresses mast cell activation induced by interaction with activated T cell membranes. Br J Pharmacol. 2009;158:907–19.
Ruela de Sousa RR, Queiroz KCS, Souza ACS, Gurgueira SA, Augusto AC, Miranda MA, Peppelenbosch MP, Ferreira CV, Aoyama H. Phosphoprotein levels, MAPK activities and NFκB expression are affected by fisetin. J Enzyme Inhib Med Chem. 2007;22:439–44.
Chou R-H, Hsieh S-C, Yu Y-L, Huang M-H, Huang Y-C, Hsieh Y-H. Fisetin inhibits migration and invasion of human cervical cancer cells by down-regulating urokinase plasminogen activator expression through suppressing the p38 MAPK-dependent NF-κB signaling pathway. PLoS ONE. 2013;8:e71983.
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G, Yin G. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7:3.
Syed DN, Afaq F, Maddodi N, Johnson JJ, Sarfaraz S, Ahmad A, Setaluri V, Mukhtar H. Inhibition of human melanoma cell growth by the dietary flavonoid fisetin is associated with disruption of Wnt/β-catenin signaling and decreased mitf levels. J Invest Dermatol. 2011;131:1291–9.
Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4:988–1004.
Suh Y, Afaq F, Khan N, Johnson JJ, Khusro FH, Mukhtar H. Fisetin induces autophagic cell death through suppression of mTOR signaling pathway in prostate cancer cells. Carcinogenesis. 2010;31:1424–33.
Zhang X-J, Jia S-S. Fisetin inhibits laryngeal carcinoma through regulation of AKT/NF-κB/mTOR and ERK1/2 signaling pathways. Biomed Pharmacother. 2016;83:1164–74.
Chamcheu JC, Esnault S, Adhami VM, Noll AL, Banang-Mbeumi S, Roy T, Singh SS, Huang S, Kousoulas KG, Mukhtar H. Fisetin, a 3,7,3′,4′-tetrahydroxyflavone inhibits the PI3K/Akt/mTOR and MAPK pathways and ameliorates psoriasis pathology in 2D and 3D organotypic human inflammatory skin models. Cells. 2019;8:1089.
Poulikakos PI, Sullivan RJ, Yaeger R. Molecular pathways and mechanisms of BRAF in cancer therapy. Clin Cancer Res. 2022;28:4618–28.
Yang SE, Hsieh MT, Tsai TH, Hsu SL. Down-modulation of Bcl-XL, release of cytochrome c and sequential activation of caspases during honokiol-induced apoptosis in human squamous lung cancer CH27 cells. Biochem Pharmacol. 2002;63:1641–51.
Zhang H, Zhang H, Wu X, Guo Y, Cheng W, Qian F. Fisetin alleviates sepsis-induced multiple organ dysfunction in mice via inhibiting p38 MAPK/MK2 signaling. Acta Pharmacol Sin. 2020;41:1348–56.
Imran M, Saeed F, Gilani SA, Shariati MA, Imran A, Afzaal M, Atif M, Tufail T, Anjum FM. Fisetin: an anticancer perspective. Food Sci Nutr. 2021;9:3–16.
Noh E-M, Park Y-J, Kim J-M, et al. Fisetin regulates TPA-induced breast cell invasion by suppressing matrix metalloproteinase-9 activation via the PKC/ROS/MAPK pathways. Eur J Pharmacol. 2015;764:79–86.
Liu H, Lu Q. Fisetin alleviates inflammation and oxidative stress in deep vein thrombosis via MAPK and NRF2 signaling pathway. Int J Mol Sci. 2024;25:3724.
Ren Q, Guo F, Tao S, Huang R, Ma L, Fu P. Flavonoid fisetin alleviates kidney inflammation and apoptosis via inhibiting Src-mediated NF-κB p65 and MAPK signaling pathways in septic AKI mice. Biomed Pharmacother. 2020;122:109772.
Wang Z-Y, Liu W-Q, Wang S, Wei Z-T. Fisetin induces G2/M phase cell cycle arrest by inactivating cdc25C-cdc2 via ATM-Chk1/2 activation in human endometrial cancer cells. Bangladesh J Pharmacol. 2015;10:279.
Bendris N, Lemmers B, Blanchard JM. Cell cycle, cytoskeleton dynamics and beyond: the many functions of cyclins and CDK inhibitors. Cell Cycle. 2015;14:1786–98.
Pal HC, Sharma S, Elmets CA, Athar M, Afaq F. Fisetin inhibits growth, induces <scp>G</scp> 2 / <scp>M</scp> arrest and apoptosis of human epidermoid carcinoma <scp>A</scp> 431 cells: role of mitochondrial membrane potential disruption and consequent caspases activation. Exp Dermatol. 2013;22:470–5.
Haddad AQ, Fleshner N, Nelson C, Saour B, Musquera M, Venkateswaran V, Klotz L. Antiproliferative mechanisms of the flavonoids 2,2′-dihydroxychalcone and fisetin in human prostate cancer cells. Nutr Cancer. 2010;62:668–81.
Syed DN, Chamcheu J-C, Khan MI, Sechi M, Lall RK, Adhami VM, Mukhtar H. Fisetin inhibits human melanoma cell growth through direct binding to p70S6K and mTOR: Findings from 3-D melanoma skin equivalents and computational modeling. Biochem Pharmacol. 2014;89:349–60.
Kishore A, Mahor AK, Singh NK, Singh PP, Rathore P, Bansal KK. Oil-in-water nanoemulsions for glaucoma treatment: an insight into the latest trends. BioImpacts. 2024. https://doi.org/10.34172/bi.2024.30224.
Zhou C, Huang Y, Nie S, Zhou S, Gao X, Chen G. Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent. Eur J Med Res. 2023;28:297.
Guo T, Dong X, Shi G. In vitro and in vivo antitumor effects of fisetin and fisetin nanopartical on ovarian cancer. J Sichuan Univ Med Sci Ed. 2018;49(4):551–5.
Guo G, Zhang W, Dang M, Yan M, Chen Z. Fisetin induces apoptosis in breast cancer MDA-MB-453 cells through degradation of HER2/neu and via the PI3K/Akt pathway. J Biochem Mol Toxicol. 2019. https://doi.org/10.1002/jbt.22268.
Wang W, Zhang Y, Jian Y, He S, Liu J, Cheng Y, Zheng S, Qian Z, Gao X, Wang X. Sensitizing chemotherapy for glioma with fisetin mediated by a microenvironment-responsive nano-drug delivery system. Nanoscale. 2024;16:97–109.
Wang L, Zhang D-Z, Wang Y-X. Bioflavonoid fisetin loaded α-tocopherol-poly(lactic acid)-based polymeric micelles for enhanced anticancer efficacy in breast cancers. Pharm Res. 2017;34:453–61.
Karami E, Behdani M, Kazemi-Lomedasht F. Albumin nanoparticles as nanocarriers for drug delivery: focusing on antibody and nanobody delivery and albumin-based drugs. J Drug Deliv Sci Technol. 2020;55:101471.
Feng C, Yuan X, Chu K, Zhang H, Ji W, Rui M. Preparation and optimization of poly (lactic acid) nanoparticles loaded with fisetin to improve anti-cancer therapy. Int J Biol Macromol. 2019;125:700–10.
Kadari A, Gudem S, Kulhari H, Bhandi MM, Borkar RM, Kolapalli VRM, Sistla R. Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPβCD in polymeric nanoparticles. Drug Deliv. 2017;24:224–32.
Gunjal P, Vishwas S, Kumar R, et al. Enhancing the oral bioavailability of fisetin: polysaccharide-based self nano-emulsifying spheroids for colon-targeted delivery. Drug Deliv Transl Res. 2024. https://doi.org/10.1007/s13346-024-01634-6.
Talaat SM, Elnaggar YSR, Gowayed MA, El-Ganainy SO, Allam M, Abdallah OY. Novel PEGylated cholephytosomes for targeting fisetin to breast cancer: in vitro appraisal and in vivo antitumoral studies. Drug Deliv Transl Res. 2024;14:433–54.
Bothiraja C, Yojana BD, Pawar AP, Shaikh KS, Thorat UH. Fisetin-loaded nanocochleates: formulation, characterisation, in vitro anticancer testing, bioavailability and biodistribution study. Expert Opin Drug Deliv. 2014;11:17–29.
Seguin J, Brullé L, Boyer R, Lu YM, Ramos Romano M, Touil YS, Scherman D, Bessodes M, Mignet N, Chabot GG. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy. Int J Pharm. 2013;444:146–54.
Ragelle H, Crauste-Manciet S, Seguin J, Brossard D, Scherman D, Arnaud P, Chabot GG. Nanoemulsion formulation of fisetin improves bioavailability and antitumour activity in mice. Int J Pharm. 2012;427:452–9.
Xu M-X, Ge C-X, Li Q, et al. Fisetin nanoparticles protect against PM2.5 exposure-induced neuroinflammation by down-regulation of astrocytes activation related NF-κB signaling pathway. J Funct Foods. 2020;65:103716.
Sharma P, Singh SK, Pandey NK, et al. Impact of solid carriers and spray drying on pre/post-compression properties, dissolution rate and bioavailability of solid self-nanoemulsifying drug delivery system loaded with simvastatin. Powder Technol. 2018;338:836–46.
Moolakkadath T, Aqil M, Ahad A, Imam SS, Praveen A, Sultana Y, Mujeeb M, Iqbal Z. Fisetin loaded binary ethosomes for management of skin cancer by dermal application on UV exposed mice. Int J Pharm. 2019;560:78–91.
Chen Y, Wu Q, Song L, He T, Li Y, Li L, Su W, Liu L, Qian Z, Gong C. Polymeric micelles encapsulating fisetin improve the therapeutic effect in colon cancer. ACS Appl Mater Interfaces. 2015;7:534–42.
Plattt VM, Szoka FC. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm. 2008;5:474–86.
Jakimiuk K, Szoka Ł, Surażyński A, Tomczyk M. Using flavonoid substitution status to predict anticancer effects in human melanoma cancers: an in vitro study. Cancers (Basel). 2024;16:487.
Mukhtar E, Adhami VM, Siddiqui IA, Verma AK, Mukhtar H. Fisetin enhances chemotherapeutic effect of cabazitaxel against human prostate cancer cells. Mol Cancer Ther. 2016;15:2863–74.
Jafarzadeh S, Baharara J, Tehranipour M. Apoptosis induction with combined use of cisplatin and fisetin in cisplatin-resistant ovarian cancer cells (A2780). Avicenna J Med Biotechnol. 2021;13:176–82.
Tripathi R, Samadder T, Gupta S, Surolia A, Shaha C. Anticancer activity of a combination of cisplatin and fisetin in embryonal carcinoma cells and xenograft tumors. Mol Cancer Ther. 2011;10:255–68.
Boța M, Vlaia L, Jîjie A-R, Marcovici I, Crişan F, Oancea C, Dehelean CA, Mateescu T, Moacă E-A. Exploring synergistic interactions between natural compounds and conventional chemotherapeutic drugs in preclinical models of lung cancer. Pharmaceuticals. 2024;17:598.
Ferreira de Oliveira JMP, Pacheco AR, Coutinho L, Oliveira H, Pinho S, Almeida L, Fernandes E, Santos C. Combination of etoposide and fisetin results in anti-cancer efficiency against osteosarcoma cell models. Arch Toxicol. 2018;92:1205–14.
Shi B, Wang L-F, Meng W-S, Chen L, Meng Z-L. Carnosic acid and fisetin combination therapy enhances inhibition of lung cancer through apoptosis induction. Int J Oncol. 2017;50:2123–35.
Bag S, Ghosal S, Karmakar S, Pramanik G, Bhowmik S. Uncovering the contrasting binding behavior of plant flavonoids fisetin and morin having subsidiary hydroxyl groups (−OH) with HRAS1 and HRAS2 i-Motif DNA structures: decoding the structural alterations and positional influences. ACS Omega. 2023;8:30315–29.
Pal HC, Baxter RD, Hunt KM, Agarwal J, Elmets CA, Athar M, Afaq F. Fisetin, a phytochemical, potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells. Oncotarget. 2015;6:28296–311.
McFadden M, Singh SK, Kinnel B, Varambally S, Singh R. The effect of paclitaxel- and fisetin-loaded PBM nanoparticles on apoptosis and reversal of drug resistance gene ABCG2 in ovarian cancer. J Ovarian Res. 2023;16:220.
Lin M-T, Lin C-L, Lin T-Y, Cheng C-W, Yang S-F, Lin C-L, Wu C-C, Hsieh Y-H, Tsai J-P. Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway. Tumor Biol. 2016;37:6987–96.
Grüter T, Blusch A, Motte J, Sgodzai M, Bachir H, Klimas R, Ambrosius B, Gold R, Ellrichmann G, Pitarokoili K. Immunomodulatory and anti-oxidative effect of the direct TRPV1 receptor agonist capsaicin on Schwann cells. J Neuroinflammation. 2020;17:1–16.
Zhuo W, Zhang L, Zhu Y, Zhu B, Chen Z. Fisetin, a dietary bioflavonoid, reverses acquired Cisplatin-resistance of lung adenocarcinoma cells through MAPK/Survivin/Caspase pathway. Am J Transl Res. 2015;7(10):2045–52.
Wu M-S, Lien G-S, Shen S-C, Yang L-Y, Chen Y-C. HSP90 inhibitors, geldanamycin and radicicol, enhance fisetin-induced cytotoxicity via induction of apoptosis in human colonic cancer cells. Evid Based Complement Altern Med. 2013;2013:1–11.
Smith ML, Murphy K, Doucette CD, Greenshields AL, Hoskin DW. The dietary flavonoid fisetin causes cell cycle arrest, caspase-dependent apoptosis, and enhanced cytotoxicity of chemotherapeutic drugs in triple-negative breast cancer cells. J Cell Biochem. 2016;117:1913–25.
Renault-Mahieux M, Vieillard V, Seguin J, Espeau P, Le DT, Lai-Kuen R, Mignet N, Paul M, Andrieux K. Co-encapsulation of fisetin and cisplatin into liposomes for glioma therapy: from formulation to cell evaluation. Pharmaceutics. 2021;13:970.
Jeng L, Kumar Velmurugan B, Chen M, Hsu H, Ho T, Day C, Lin Y, Padma VV, Tu C, Huang C. Fisetin mediated apoptotic cell death in parental and oxaliplatin/irinotecan resistant colorectal cancer cells in vitro and in vivo. J Cell Physiol. 2018;233:7134–42.
Yi C, Zhang Y, Yu Z, et al. Melatonin enhances the anti-tumor effect of fisetin by inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways. PLoS ONE. 2014;9:e99943.
Zehra K, Banu A, Can E, Hülya C. Fisetin and/or capecitabine causes changes in apoptosis pathways in capecitabine-resistant colorectal cancer cell lines. Naunyn Schmiedebergs Arch Pharmacol. 2024. https://doi.org/10.1007/s00210-024-03145-0.
Lee W-R, Shen S-C, Lin H-Y, Hou W-C, Yang L-L, Chen Y-C. Wogonin and fisetin induce apoptosis in human promyeloleukemic cells, accompanied by a decrease of reactive oxygen species, and activation of caspase 3 and Ca2+-dependent endonuclease. Biochem Pharmacol. 2002;63:225–36.
Wu M, Lien G, Shen S, Yang L, Chen Y. N -acetyl- L -cysteine enhances fisetin-induced cytotoxicity via induction of ROS-independent apoptosis in human colonic cancer cells. Mol Carcinog. 2014. https://doi.org/10.1002/mc.22053.
Jeong D, Choi JM, Choi Y, Jeong K, Cho E, Jung S. Complexation of fisetin with novel cyclosophoroase dimer to improve solubility and bioavailability. Carbohydr Polym. 2013;97:196–202.
Jalalpour Choupanan M, Shahbazi S, Reiisi S. Naringenin in combination with quercetin/fisetin shows synergistic anti-proliferative and migration reduction effects in breast cancer cell lines. Mol Biol Rep. 2023;50:7489–500.
Karimzadeh MR, Ghahfarokhi MS, Heidari R, Reiisi S. Fisetin-metformin co-loaded in mesoporous silica nanoparticles (MSNs) inhibited triple negative breast cancer proliferation. Nanomedicine J. 2023;10:293.
Moustafa MA, El-Refaie WM, Elnaggar YSR, El-Mezayen NS, Awaad AK, Abdallah OY. Fucoidan/hyaluronic acid cross-linked zein nanoparticles loaded with fisetin as a novel targeted nanotherapy for oral cancer. Int J Biol Macromol. 2023;241:124528.
Farooqi AA, Naureen H, Zahid R, Youssef L, Attar R, Xu B. Cancer chemopreventive role of fisetin: regulation of cell signaling pathways in different cancers. Pharmacol Res. 2021;172:105784.
Farsad-Naeimi A, Alizadeh M, Esfahani A, Darvish Aminabad E. Effect of fisetin supplementation on inflammatory factors and matrix metalloproteinase enzymes in colorectal cancer patients. Food Funct. 2018;9:2025–31.
Pal HC, Hunt KM, Diamond A, Elmets CA, Afaq F. Phytochemicals for the management of melanoma. Mini Rev Med Chem. 2017. https://doi.org/10.2174/138955751715170907095822.
Park B-S, Choi N-E, Lee JH, Kang H-M, Yu S-B, Kim H-J, Kang H-K, Kim I-R. Crosstalk between fisetin-induced apoptosis and autophagy in human oral squamous cell carcinoma. J Cancer. 2019;10:138–46.
Su C, Kuo C, Lu K, Yu F, Ma Y, Yang J, Chu Y, Chueh F, Liu K, Chung J. Fisetin-induced apoptosis of human oral cancer SCC-4 cells through reactive oxygen species production, endoplasmic reticulum stress, caspase-, and mitochondria-dependent signaling pathways. Environ Toxicol. 2017;32:1725–41.
Won D-H, Chung SH, Shin J-A, Hong K-O, Yang I-H, Yun J-W, Cho S-D. Induction of sestrin 2 is associated with fisetin-mediated apoptosis in human head and neck cancer cell lines. J Clin Biochem Nutr. 2019;64:97–105.
Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28.
Ravula AR, Teegala SB, Kalakotla S, Pasangulapati JP, Perumal V, Boyina HK. Fisetin, potential flavonoid with multifarious targets for treating neurological disorders: an updated review. Eur J Pharmacol. 2021;910:174492.
Acknowledgements
The authors would like to express their gratitude to: Dr. Irina Zamfir, MD, RCP London, Basildon University Hospital UK for providing professional English editing of this manuscript and for editorial support.
Funding
The authors have not disclosed any funding.
Author information
Authors and Affiliations
Contributions
RF, PS, MS, PP, RK, SSM, JS-R, DC made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis, and interpretation, or all these areas. That is revising or critically reviewing the article; giving final approval of the version to be published; agreeing on the journal to which the article has been submitted; and, confirming to be accountable for all aspects of the work.
Corresponding authors
Ethics declarations
Competing interests
The authors have not disclosed any competing interests.
Ethical approval and consent to participate
Not Applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Fatima, R., Soni, P., Sharma, M. et al. Fisetin as a chemoprotective and chemotherapeutic agent: mechanistic insights and future directions in cancer therapy. Med Oncol 42, 104 (2025). https://doi.org/10.1007/s12032-025-02664-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12032-025-02664-x