Skip to main content

Advertisement

Log in

Fisetin as a chemoprotective and chemotherapeutic agent: mechanistic insights and future directions in cancer therapy

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cancer remains a leading cause of mortality globally, characterized by the uncontrolled proliferation of abnormal cells, invasion of healthy tissues, and potential metastasis. Natural compounds have become a focus in cancer research due to their potential therapeutic roles. Among these, fisetin, a dietary flavonoid, demonstrates notable anti-cancer properties through various molecular mechanisms. This review evaluates the chemoprotective and chemotherapeutic potential of fisetin, focusing on its mechanisms of action against cancer and its capacity to enhance cancer treatment. A systematic literature search was conducted across PubMed, Web of Science, and Scopus databases using keywords related to fisetin and cancer. The review synthesizes findings from in vitro and in vivo studies examining fisetin’s effects on signaling pathways, apoptosis induction, oxidative stress modulation, and synergistic potential with chemotherapeutic agents. Fisetin has shown the ability to suppress tumor growth and metastasis by modulating critical signaling pathways, including PI3K/Akt/mTOR, NF-κB, and MAPK. It induces apoptosis in cancer cells through mitochondrial and endoplasmic reticulum stress responses and demonstrates antioxidative properties by reducing reactive oxygen species. Additionally, fisetin enhances the efficacy of conventional chemotherapies, indicating its role as a potential adjuvant in cancer treatment. Fisetin presents a promising natural compound with diverse anti-cancer effects, impacting cell cycle arrest, apoptosis, and oxidative stress pathways. Further clinical studies are warranted to fully elucidate its therapeutic potential and to optimize its delivery for improved bioavailability in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

Abbreviations

5-FU:

5-Fluorouracil

Akt:

Protein kinase B

ALT:

Alanine transaminase

AMPK:

Adenosine monophosphate-activated protein kinase

AP-1:

Activator protein 1

AST:

Aspartate transaminase

ATM:

Ataxia telangiectasia mutated

AUC:

Area under the curve

BaP:

Benzo(a)pyrene

BAX:

Bcl-2-associated X protein

Bcl-2:

B-cell lymphoma 2

Bcl-xl:

B-cell lymphoma-extra large

Bcl2l2:

B-cell lymphoma-2-like 2

BIRC8:

Baculoviral IAP repeat-containing 8

BUB1:

Budding uninhibited by benzimidazoles 1

BubR1:

Budding uninhibited by benzimidazoles 1-related 1

CAT:

Catalase

CDK:

Cyclin-dependent kinase

Cdc2:

Cell division cycle 2

Cdc25:

Cell division cycle 25

Cenp-F:

Centromere protein F

Chk1:

Checkpoint kinase 1

COX-2:

Cyclooxygenase-2

CRP:

C-reactive protein

DMBA:

7,12-Dimethylbenz[a]anthracene

DNA:

Deoxyribonucleic acid

DR4/DR5:

Death receptor 4 / Death receptor 5

ELISA:

Enzyme-linked immunosorbent assay

eNOS:

Endothelial nitric oxide synthase

ERK:

Extracellular signal-regulated kinase

FAK:

Focal adhesion kinase

FADD:

Fas-associated death domain

GADD45A/B:

Growth arrest and DNA damage-inducible proteins

GPx:

Glutathione peroxidase

GRP78:

Glucose-regulated protein 78

GSK-3β:

Glycogen synthase kinase 3 beta

GSH:

Glutathione

GSSG:

Oxidized glutathione

GST:

Glutathione-S-transferase

H2O2:

Hydrogen peroxide

HO-1:

Heme oxygenase-1

HRAS1/HRAS2:

Harvey rat sarcoma viral oncogenes

HSF-1:

Heat shock factor 1

IC50:

Inhibitory concentration 50%

IGF1R:

Insulin-like growth factor 1 receptor

IL-1β:

Interleukin-1 beta

IL-6:

Interleukin-6

IL-8:

Interleukin-8

IL-10:

Interleukin-10

JNK:

C-Jun N-terminal kinase

LLC:

Lewis lung carcinoma

MAPK:

Mitogen-activated protein kinase

Mcl-1:

Myeloid cell leukemia sequence 1

MEK1/2:

Mitogen-activated protein kinase kinase 1/2

MMP2/9:

Matrix metalloproteinases 2 and 9

Mitf:

Microphthalmia-associated transcription factor

mTOR:

Mammalian target of rapamycin

MTT assay:

Diphenyl-2H-tetrazolium bromide assay

NADPH:

Nicotinamide adenine dinucleotide phosphate

NF-κB:

Nuclear factor kappa B

NHEKs:

Normal human epidermal keratinocytes

Nrf2:

Nuclear factor erythroid 2-related factor 2

NQO1:

NAD(P)H quinone dehydrogenase 1

OSCC:

Oral squamous cell carcinoma

PARP:

Poly (ADP-ribose) polymerase

PCNA:

Proliferating cell nuclear antigen

PI3K:

Phosphatidylinositol-3-kinase

PKC:

Protein kinase C

PSA:

Prostate-specific antigen

p53:

Tumor protein p53

RB-1:

Retinoblastoma 1

rRNA:

Ribosomal RNA

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TGF-β1:

Transforming growth factor beta 1

TNF-α:

Tumor necrosis factor alpha

TSC1/2:

Tuberous sclerosis complex 1 and 2

TUNEL assay:

Terminal deoxynucleotidyl transferase dUTP nick-end labeling assay

uPA:

Urokinase-type plasminogen activator

VEGF:

Vascular endothelial growth factor

Wnt:

Wingless-related integration site

References

  1. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149:778–89.

    Article  CAS  Google Scholar 

  2. Khani Y, Pourgholam-Amiji N, Afshar M, Otroshi O, Sharifi-Esfahani M, Sadeghi-Gandomani H, Vejdani M, Salehiniya H. Tobacco smoking and cancer types: a review. Biomed Res Ther. 2018;5:2142–59.

    Article  Google Scholar 

  3. Zamanian MY, Taheri N, Ramadan MF, Mustafa YF, Alkhayyat S, Sergeevna KN, Alsaab HO, Hjazi A, Molavi Vasei F, Daneshvar S. A comprehensive view on the fisetin impact on colorectal cancer in animal models: focusing on cellular and molecular mechanisms. Anim Models Exp Med. 2024;7(5):591–605. https://doi.org/10.1002/ame2.12476.

    Article  CAS  Google Scholar 

  4. Patra S, Pradhan B, Nayak R, Behera C, Das S, Patra SK, Efferth T, Jena M, Bhutia SK. Dietary polyphenols in chemoprevention and synergistic effect in cancer: clinical evidences and molecular mechanisms of action. Phytomedicine. 2021;90:153554.

    Article  CAS  PubMed  Google Scholar 

  5. Prasher P, Fatima R, Sharma M, Tynybekov B, Alshahrani AM, Ateşşahin DA, Sharifi-Rad J, Calina D. Honokiol and its analogues as anticancer compounds: current mechanistic insights and structure-activity relationship. Chem Biol Interact. 2023;386:110747.

    Article  CAS  PubMed  Google Scholar 

  6. Kitic D, Miladinovic B, Randjelovic M, et al. Anticancer and chemopreventive potential of Morinda citrifolia L. bioactive compounds: a comprehensive update. Phyther Res. 2024;38:1932–50.

    Article  CAS  Google Scholar 

  7. Ali M, Singh P, Singh L, Kumar S, Scholar PG, Professor A, Professor A. Phytochemical constituents and pharmacological activities, profile of morinda citrifolia: a review. World J Pharm Res. 2020;9:422.

    Google Scholar 

  8. Qnais E, Alqudah A, Bseiso Y, Gammoh O, Wedyan M, Alotaibi B. Exploring the therapeutic potential of fisetin: a comprehensive study on its anti-nociceptive and anti-inflammatory effects. Eur Rev Med Pharmacol Sci. 2023;27(21):10773–84.

    CAS  PubMed  Google Scholar 

  9. Ciapała K, Rojewska E, Pawlik K, Ciechanowska A, Mika J. Analgesic effects of fisetin, peimine, astaxanthin, artemisinin, bardoxolone methyl and 740 Y-P and their influence on opioid analgesia in a mouse model of neuropathic pain. Int J Mol Sci. 2023;24:9000.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Grynkiewicz G, Demchuk OM. New perspectives for fisetin. Front Chem. 2019. https://doi.org/10.3389/fchem.2019.00697.

    Article  PubMed  PubMed Central  Google Scholar 

  11. He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther. 2021;6:425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu X, Jung J, Cho HJ, Lim DY, Lee HS, Chun HS, Kwon DY, Park JH. Fisetin inhibits the activities of cyclin-dependent kinases leading to cell cycle arrest in HT-29 human colon cancer cells. J Nutr. 2005;135:2884–90.

    Article  CAS  PubMed  Google Scholar 

  13. Sundarraj K, Raghunath A, Perumal E. A review on the chemotherapeutic potential of fisetin: in vitro evidences. Biomed Pharmacother. 2018;97:928–40.

    Article  CAS  PubMed  Google Scholar 

  14. Kashyap D, Sharma A, Sak K, Tuli HS, Buttar HS, Bishayee A. Fisetin: a bioactive phytochemical with potential for cancer prevention and pharmacotherapy. Life Sci. 2018;194:75–87.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar RM, Kumar H, Bhatt T, Jain R, Panchal K, Chaurasiya A, Jain V. Fisetin in cancer: attributes, developmental aspects, and nanotherapeutics. Pharmaceuticals. 2023;16:196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maurya BK, Trigun SK. Fisetin modulates antioxidant enzymes and inflammatory factors to inhibit aflatoxin-B1 Induced hepatocellular carcinoma in rats. Oxid Med Cell Longev. 2016;2016:1–9.

    Article  Google Scholar 

  17. Chen J-K, Peng S-F, Lai KC, Liu H-C, Huang Y-P, Lin C-C, Huang A-C, Chueh F-S, Chung J-G. Fisetin suppresses human osteosarcoma U-2 OS cell migration and invasion via affecting FAK, uPA and NF-ĸB signaling pathway in vitro. In Vivo. 2019;33:801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chiruta C, Schubert D, Dargusch R, Maher P. Chemical modification of the multitarget neuroprotective compound fisetin. J Med Chem. 2012;55:378–89.

    Article  CAS  PubMed  Google Scholar 

  19. Kimira M, Arai Y, Shimoi K, Watanabe S. Japanese intake of flavonoids and isoflavonoids from foods. J Epidemiol. 1998;8:168–75.

    Article  CAS  PubMed  Google Scholar 

  20. Stahlhut SG, Siedler S, Malla S, Harrison SJ, Maury J, Neves AR, Forster J. Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli. Metab Eng. 2015;31:84–93.

    Article  CAS  PubMed  Google Scholar 

  21. Tsunekawa R, Hanaya K, Higashibayashi S, Sugai T. Synthesis of fisetin and 2′,4′,6′-trihydroxydihyrochalcone 4′- O -β-neohesperidoside based on site-selective deacetylation and deoxygenation. Biosci Biotechnol Biochem. 2018;82:1316–22.

    Article  CAS  PubMed  Google Scholar 

  22. Pandey RP, Parajuli P, Chu LL, Kim S-Y, Sohng JK. Biosynthesis of a novel fisetin glycoside from engineered Escherichia coli. J Ind Eng Chem. 2016;43:13–9.

    Article  CAS  Google Scholar 

  23. Wang X, Yang J, Ding B, et al. Design, synthesis and bioactivity evaluation of fisetin derivatives as potential anti-inflammatory agents against LPS-induced acute lung injury. Bioorg Med Chem. 2021;49:116456.

    Article  CAS  PubMed  Google Scholar 

  24. Szymczak J, Cielecka-Piontek J. Fisetin—in search of better bioavailability—from macro to nano modifications: a review. Int J Mol Sci. 2023;24:14158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumar H, Chand P, Pachal S, Mallick S, Jain R, Madhunapantula SV, Jain V. Fisetin-loaded nanostructured lipid carriers: formulation and evaluations against advanced and metastatic melanoma. Mol Pharm. 2023;20:6035–55.

    Article  CAS  PubMed  Google Scholar 

  26. Krishnakumar IM, Jaja-Chimedza A, Joseph A, Balakrishnan A, Maliakel B, Swick A. Enhanced bioavailability and pharmacokinetics of a novel hybrid-hydrogel formulation of fisetin orally administered in healthy individuals: a randomised double-blinded comparative crossover study. J Nutr Sci. 2022;11:e74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shia C-S, Tsai S-Y, Kuo S-C, Hou Y-C, Chao P-DL. Metabolism and pharmacokinetics of 3,3′,4′,7-tetrahydroxyflavone (Fisetin), 5-hydroxyflavone, and 7-hydroxyflavone and antihemolysis effects of fisetin and its serum metabolites. J Agric Food Chem. 2009;57:83–9.

    Article  CAS  PubMed  Google Scholar 

  28. Lall RK, Adhami VM, Mukhtar H. Dietary flavonoid fisetin for cancer prevention and treatment. Mol Nutr Food Res. 2016;60:1396–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Touil YS, Seguin J, Scherman D, Chabot GG. Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinoma-bearing mice. Cancer Chemother Pharmacol. 2011;68:445–55.

    Article  CAS  PubMed  Google Scholar 

  30. Pandey A, Trigun SK. Fisetin induces apoptosis in colorectal cancer cells by suppressing autophagy and down-regulating nuclear factor erythroid 2-related factor 2 (Nrf2). J Cell Biochem. 2023;124:1289–308.

    Article  CAS  PubMed  Google Scholar 

  31. Mukhtar E, Adhami VM, Sechi M, Mukhtar H. Dietary flavonoid fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells. Cancer Lett. 2015;367:173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Salmela A-L, Pouwels J, Varis A, Kukkonen AM, Toivonen P, Halonen PK, Perälä M, Kallioniemi O, Gorbsky GJ, Kallio MJ. Dietary flavonoid fisetin induces a forced exit from mitosis by targeting the mitotic spindle checkpoint. Carcinogenesis. 2009;30:1032–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xiao Y, Liu Y, Gao Z, Li X, Weng M, Shi C, Wang C, Sun L. Fisetin inhibits the proliferation, migration and invasion of pancreatic cancer by targeting PI3K/AKT/mTOR signaling. Aging (Albany NY). 2021;13:24753–67.

    Article  CAS  PubMed  Google Scholar 

  34. Sechi M, Syed DN, Pala N, Mariani A, Marceddu S, Brunetti A, Mukhtar H, Sanna V. Nanoencapsulation of dietary flavonoid fisetin: Formulation and in vitro antioxidant and α-glucosidase inhibition activities. Mater Sci Eng C. 2016;68:594–602.

    Article  CAS  Google Scholar 

  35. Yadav N, Francis AP, Chandramohan S, Bhat SA, Rajagopalan R. Enhancing the fisetin efficacy through encapsulation with polymannose and nanotization for effective anticancer therapy towards breast cancer. J Nanoparticle Res. 2024;26:83.

    Article  CAS  Google Scholar 

  36. Ravichandran N, Suresh G, Ramesh B, Manikandan R, Choi YW, Vijaiyan Siva G. Fisetin modulates mitochondrial enzymes and apoptotic signals in benzo(a)pyrene-induced lung cancer. Mol Cell Biochem. 2014;390:225–34.

    Article  CAS  PubMed  Google Scholar 

  37. Hassan SSU, Samanta S, Dash R, Karpiński TM, Habibi E, Sadiq A, Ahmadi A, Bungau S. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: focus on the role of oxidative stress. Front Pharmacol. 2022. https://doi.org/10.3389/fphar.2022.1015835.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Böhl M, Tietze S, Sokoll A, Madathil S, Pfennig F, Apostolakis J, Fahmy K, Gutzeit HO. Flavonoids affect actin functions in cytoplasm and nucleus. Biophys J. 2007;93:2767–80.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tailor D, Mishra D, Malhotra SV, Singh RP. Abstract 4617: Fisetin, a multi-kinase inhibitor enhances chemotherapeutic sensitivity in head and neck cancer. Cancer Res. 2024;84:4617.

    Article  Google Scholar 

  40. Adan A, Baran Y. Fisetin and hesperetin induced apoptosis and cell cycle arrest in chronic myeloid leukemia cells accompanied by modulation of cellular signaling. Tumor Biol. 2016;37:5781–95.

    Article  CAS  Google Scholar 

  41. Syed DN, Adhami VM, Khan N, Khan MI, Mukhtar H. Exploring the molecular targets of dietary flavonoid fisetin in cancer. Semin Cancer Biol. 2016;40–41:130–40.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Murtaza I, Adhami VM, Bin HB, Saleem M, Mukhtar H. Fisetin, a natural flavonoid, targets chemoresistant human pancreatic cancer AsPC-1 cells through DR3-mediated inhibition of NF-κB. Int J Cancer. 2009;125:2465–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chiarini F, Evangelisti C, McCubrey JA, Martelli AM. Current treatment strategies for inhibiting mTOR in cancer. Trends Pharmacol Sci. 2015;36:124–35.

    Article  CAS  PubMed  Google Scholar 

  44. Khan N, Jajeh F, Eberhardt EL, et al. Fisetin and 5-fluorouracil: effective combination for PIK3CA -mutant colorectal cancer. Int J Cancer. 2019;145:3022–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sivamaruthi BS, Kumar Nallasamy P, Suganthy N, Kesika P, Chaiyasut C. Pharmaceutical and biomedical applications of starch-based drug delivery system: a review. J Drug Deliv Sci Technol. 2022;77:103890.

    Article  CAS  Google Scholar 

  46. Pal HC, Sharma S, Strickland LR, Katiyar SK, Ballestas ME, Athar M, Elmets CA, Afaq F. Fisetin inhibits human melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways. PLoS ONE. 2014;9:e86338.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ying T-H, Yang S-F, Tsai S-J, Hsieh S-C, Huang Y-C, Bau D-T, Hsieh Y-H. Fisetin induces apoptosis in human cervical cancer HeLa cells through ERK1/2-mediated activation of caspase-8-/caspase-3-dependent pathway. Arch Toxicol. 2012;86:263–73.

    Article  CAS  PubMed  Google Scholar 

  48. Sung B, Pandey MK, Aggarwal BB. Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-κB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IκBα kinase activatio. Mol Pharmacol. 2007;71:1703–14.

    Article  CAS  PubMed  Google Scholar 

  49. McCann SE, Hootman KC, Weaver AM, Thompson LU, Morrison C, Hwang H, Edge SB, Ambrosone CB, Horvath PJ, Kulkarni SA. Dietary intakes of total and specific lignans are associated with clinical breast tumor characteristics. J Nutr. 2012;142:91–8.

    Article  CAS  PubMed  Google Scholar 

  50. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013;2013:1–16.

    Article  Google Scholar 

  51. Naeimi AF, Alizadeh M. Antioxidant properties of the flavonoid fisetin: an updated review of in vivo and in vitro studies. Trends Food Sci Technol. 2017;70:34–44.

    Article  CAS  Google Scholar 

  52. Lee SE, Il JS, Yang H, Park C, Jin Y, Park YS. Fisetin induces Nrf2-mediated HO-1 expression through PKC-δ and p38 in human umbilical vein endothelial cells. J Cell Biochem. 2011;112:2352–60.

    Article  CAS  PubMed  Google Scholar 

  53. Jang KY, Jeong S-J, Kim S-H, Jung JH, Kim J-H, Koh W, Chen C-Y, Kim S-H. Activation of reactive oxygen species/AMP activated protein kinase signaling mediates fisetin-induced apoptosis in multiple myeloma U266 cells. Cancer Lett. 2012;319:197–202.

    Article  CAS  PubMed  Google Scholar 

  54. Bhat TA, Nambiar D, Pal A, Agarwal R, Singh RP. Fisetin inhibits various attributes of angiogenesis in vitro and in vivo–implications for angioprevention. Carcinogenesis. 2012;33:385–93.

    Article  CAS  PubMed  Google Scholar 

  55. Nitti M, Ivaldo C, Traverso N, Furfaro AL. Clinical significance of heme oxygenase 1 in tumor progression. Antioxidants. 2021;10:789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sarvarian P, Samadi P, Gholipour E, Khodadadi M, Pourakbari R, Akbarzadelale P, Shamsasenjan K. Fisetin-loaded grape-derived nanoparticles improve anticancer efficacy in MOLT-4 cells. Biochem Biophys Res Commun. 2023;658:69–79.

    Article  CAS  PubMed  Google Scholar 

  57. Kammerud SC, Metge BJ, Elhamamsy AR, Weeks SE, Alsheikh HA, Mattheyses AL, Shevde LA, Samant RS. Novel role of the dietary flavonoid fisetin in suppressing rRNA biogenesis. Lab Investig. 2021;101:1439–48.

    Article  CAS  PubMed  Google Scholar 

  58. Lu H, Chang DJ, Baratte B, Meijer L, Schulze-Gahmen U. Crystal structure of a human cyclin-dependent kinase 6 complex with a flavonol inhibitor, fisetin. J Med Chem. 2005;48:737–43.

    Article  CAS  PubMed  Google Scholar 

  59. Ravichandran N, Suresh G, Ramesh B, Vijaiyan Siva G. Fisetin, a novel flavonol attenuates benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Food Chem Toxicol. 2011;49:1141–7.

    Article  CAS  PubMed  Google Scholar 

  60. Macgregor JT, Jurd L. Mutagenicity of plant flavonoids: structural requirements for mutagenic activity in Salmonella typhimurium. Mutat Res Mutagen Relat Subj. 1978;54:297–309.

    CAS  Google Scholar 

  61. Sun Y, Qin H, Zhang H, Feng X, Yang L, Hou D-X, Chen J. Fisetin inhibits inflammation and induces autophagy by mediating PI3K/AKT/mTOR signaling in LPS-induced RAW264.7 cells. Food Nutr Res. 2021. https://doi.org/10.29219/fnr.v65.6355.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kang KA, Piao MJ, Hyun JW. Fisetin induces apoptosis in human nonsmall lung cancer cells via a mitochondria-mediated pathway. Vitr Cell Dev Biol Anim. 2015;51:300–9.

    Article  CAS  Google Scholar 

  63. Rengarajan T, Yaacob NS. The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways. Eur J Pharmacol. 2016;789:8–16.

    Article  CAS  PubMed  Google Scholar 

  64. Kubina R, Iriti M, Kabała-Dzik A. Anticancer potential of selected flavonols: fisetin, kaempferol, and quercetin on head and neck cancers. Nutrients. 2021;13:845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther. 2024;9:53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li J, Cheng Y, Qu W, Sun Y, Wang Z, Wang H, Tian B. Fisetin, a dietary flavonoid, induces cell cycle arrest and apoptosis through activation of p53 and inhibition of NF-Kappa B pathways in bladder cancer cells. Basic Clin Pharmacol Toxicol. 2011;108:84–93.

    Article  CAS  PubMed  Google Scholar 

  67. Nagai K, Takahashi Y, Mikami I, Fukusima T, Oike H, Kobori M. The hydroxyflavone, fisetin, suppresses mast cell activation induced by interaction with activated T cell membranes. Br J Pharmacol. 2009;158:907–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ruela de Sousa RR, Queiroz KCS, Souza ACS, Gurgueira SA, Augusto AC, Miranda MA, Peppelenbosch MP, Ferreira CV, Aoyama H. Phosphoprotein levels, MAPK activities and NFκB expression are affected by fisetin. J Enzyme Inhib Med Chem. 2007;22:439–44.

    Article  CAS  Google Scholar 

  69. Chou R-H, Hsieh S-C, Yu Y-L, Huang M-H, Huang Y-C, Hsieh Y-H. Fisetin inhibits migration and invasion of human cervical cancer cells by down-regulating urokinase plasminogen activator expression through suppressing the p38 MAPK-dependent NF-κB signaling pathway. PLoS ONE. 2013;8:e71983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G, Yin G. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7:3.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Syed DN, Afaq F, Maddodi N, Johnson JJ, Sarfaraz S, Ahmad A, Setaluri V, Mukhtar H. Inhibition of human melanoma cell growth by the dietary flavonoid fisetin is associated with disruption of Wnt/β-catenin signaling and decreased mitf levels. J Invest Dermatol. 2011;131:1291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4:988–1004.

    Article  CAS  PubMed  Google Scholar 

  73. Suh Y, Afaq F, Khan N, Johnson JJ, Khusro FH, Mukhtar H. Fisetin induces autophagic cell death through suppression of mTOR signaling pathway in prostate cancer cells. Carcinogenesis. 2010;31:1424–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang X-J, Jia S-S. Fisetin inhibits laryngeal carcinoma through regulation of AKT/NF-κB/mTOR and ERK1/2 signaling pathways. Biomed Pharmacother. 2016;83:1164–74.

    Article  CAS  PubMed  Google Scholar 

  75. Chamcheu JC, Esnault S, Adhami VM, Noll AL, Banang-Mbeumi S, Roy T, Singh SS, Huang S, Kousoulas KG, Mukhtar H. Fisetin, a 3,7,3′,4′-tetrahydroxyflavone inhibits the PI3K/Akt/mTOR and MAPK pathways and ameliorates psoriasis pathology in 2D and 3D organotypic human inflammatory skin models. Cells. 2019;8:1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Poulikakos PI, Sullivan RJ, Yaeger R. Molecular pathways and mechanisms of BRAF in cancer therapy. Clin Cancer Res. 2022;28:4618–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang SE, Hsieh MT, Tsai TH, Hsu SL. Down-modulation of Bcl-XL, release of cytochrome c and sequential activation of caspases during honokiol-induced apoptosis in human squamous lung cancer CH27 cells. Biochem Pharmacol. 2002;63:1641–51.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang H, Zhang H, Wu X, Guo Y, Cheng W, Qian F. Fisetin alleviates sepsis-induced multiple organ dysfunction in mice via inhibiting p38 MAPK/MK2 signaling. Acta Pharmacol Sin. 2020;41:1348–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Imran M, Saeed F, Gilani SA, Shariati MA, Imran A, Afzaal M, Atif M, Tufail T, Anjum FM. Fisetin: an anticancer perspective. Food Sci Nutr. 2021;9:3–16.

    Article  CAS  PubMed  Google Scholar 

  80. Noh E-M, Park Y-J, Kim J-M, et al. Fisetin regulates TPA-induced breast cell invasion by suppressing matrix metalloproteinase-9 activation via the PKC/ROS/MAPK pathways. Eur J Pharmacol. 2015;764:79–86.

    Article  CAS  PubMed  Google Scholar 

  81. Liu H, Lu Q. Fisetin alleviates inflammation and oxidative stress in deep vein thrombosis via MAPK and NRF2 signaling pathway. Int J Mol Sci. 2024;25:3724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ren Q, Guo F, Tao S, Huang R, Ma L, Fu P. Flavonoid fisetin alleviates kidney inflammation and apoptosis via inhibiting Src-mediated NF-κB p65 and MAPK signaling pathways in septic AKI mice. Biomed Pharmacother. 2020;122:109772.

    Article  CAS  PubMed  Google Scholar 

  83. Wang Z-Y, Liu W-Q, Wang S, Wei Z-T. Fisetin induces G2/M phase cell cycle arrest by inactivating cdc25C-cdc2 via ATM-Chk1/2 activation in human endometrial cancer cells. Bangladesh J Pharmacol. 2015;10:279.

    Article  Google Scholar 

  84. Bendris N, Lemmers B, Blanchard JM. Cell cycle, cytoskeleton dynamics and beyond: the many functions of cyclins and CDK inhibitors. Cell Cycle. 2015;14:1786–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pal HC, Sharma S, Elmets CA, Athar M, Afaq F. Fisetin inhibits growth, induces <scp>G</scp> 2 / <scp>M</scp> arrest and apoptosis of human epidermoid carcinoma <scp>A</scp> 431 cells: role of mitochondrial membrane potential disruption and consequent caspases activation. Exp Dermatol. 2013;22:470–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Haddad AQ, Fleshner N, Nelson C, Saour B, Musquera M, Venkateswaran V, Klotz L. Antiproliferative mechanisms of the flavonoids 2,2′-dihydroxychalcone and fisetin in human prostate cancer cells. Nutr Cancer. 2010;62:668–81.

    Article  CAS  PubMed  Google Scholar 

  87. Syed DN, Chamcheu J-C, Khan MI, Sechi M, Lall RK, Adhami VM, Mukhtar H. Fisetin inhibits human melanoma cell growth through direct binding to p70S6K and mTOR: Findings from 3-D melanoma skin equivalents and computational modeling. Biochem Pharmacol. 2014;89:349–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kishore A, Mahor AK, Singh NK, Singh PP, Rathore P, Bansal KK. Oil-in-water nanoemulsions for glaucoma treatment: an insight into the latest trends. BioImpacts. 2024. https://doi.org/10.34172/bi.2024.30224.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zhou C, Huang Y, Nie S, Zhou S, Gao X, Chen G. Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent. Eur J Med Res. 2023;28:297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Guo T, Dong X, Shi G. In vitro and in vivo antitumor effects of fisetin and fisetin nanopartical on ovarian cancer. J Sichuan Univ Med Sci Ed. 2018;49(4):551–5.

    Google Scholar 

  91. Guo G, Zhang W, Dang M, Yan M, Chen Z. Fisetin induces apoptosis in breast cancer MDA-MB-453 cells through degradation of HER2/neu and via the PI3K/Akt pathway. J Biochem Mol Toxicol. 2019. https://doi.org/10.1002/jbt.22268.

    Article  PubMed  Google Scholar 

  92. Wang W, Zhang Y, Jian Y, He S, Liu J, Cheng Y, Zheng S, Qian Z, Gao X, Wang X. Sensitizing chemotherapy for glioma with fisetin mediated by a microenvironment-responsive nano-drug delivery system. Nanoscale. 2024;16:97–109.

    Article  Google Scholar 

  93. Wang L, Zhang D-Z, Wang Y-X. Bioflavonoid fisetin loaded α-tocopherol-poly(lactic acid)-based polymeric micelles for enhanced anticancer efficacy in breast cancers. Pharm Res. 2017;34:453–61.

    Article  CAS  PubMed  Google Scholar 

  94. Karami E, Behdani M, Kazemi-Lomedasht F. Albumin nanoparticles as nanocarriers for drug delivery: focusing on antibody and nanobody delivery and albumin-based drugs. J Drug Deliv Sci Technol. 2020;55:101471.

    Article  CAS  Google Scholar 

  95. Feng C, Yuan X, Chu K, Zhang H, Ji W, Rui M. Preparation and optimization of poly (lactic acid) nanoparticles loaded with fisetin to improve anti-cancer therapy. Int J Biol Macromol. 2019;125:700–10.

    Article  CAS  PubMed  Google Scholar 

  96. Kadari A, Gudem S, Kulhari H, Bhandi MM, Borkar RM, Kolapalli VRM, Sistla R. Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPβCD in polymeric nanoparticles. Drug Deliv. 2017;24:224–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gunjal P, Vishwas S, Kumar R, et al. Enhancing the oral bioavailability of fisetin: polysaccharide-based self nano-emulsifying spheroids for colon-targeted delivery. Drug Deliv Transl Res. 2024. https://doi.org/10.1007/s13346-024-01634-6.

    Article  PubMed  Google Scholar 

  98. Talaat SM, Elnaggar YSR, Gowayed MA, El-Ganainy SO, Allam M, Abdallah OY. Novel PEGylated cholephytosomes for targeting fisetin to breast cancer: in vitro appraisal and in vivo antitumoral studies. Drug Deliv Transl Res. 2024;14:433–54.

    Article  CAS  PubMed  Google Scholar 

  99. Bothiraja C, Yojana BD, Pawar AP, Shaikh KS, Thorat UH. Fisetin-loaded nanocochleates: formulation, characterisation, in vitro anticancer testing, bioavailability and biodistribution study. Expert Opin Drug Deliv. 2014;11:17–29.

    Article  CAS  PubMed  Google Scholar 

  100. Seguin J, Brullé L, Boyer R, Lu YM, Ramos Romano M, Touil YS, Scherman D, Bessodes M, Mignet N, Chabot GG. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy. Int J Pharm. 2013;444:146–54.

    Article  CAS  PubMed  Google Scholar 

  101. Ragelle H, Crauste-Manciet S, Seguin J, Brossard D, Scherman D, Arnaud P, Chabot GG. Nanoemulsion formulation of fisetin improves bioavailability and antitumour activity in mice. Int J Pharm. 2012;427:452–9.

    Article  CAS  PubMed  Google Scholar 

  102. Xu M-X, Ge C-X, Li Q, et al. Fisetin nanoparticles protect against PM2.5 exposure-induced neuroinflammation by down-regulation of astrocytes activation related NF-κB signaling pathway. J Funct Foods. 2020;65:103716.

    Article  CAS  Google Scholar 

  103. Sharma P, Singh SK, Pandey NK, et al. Impact of solid carriers and spray drying on pre/post-compression properties, dissolution rate and bioavailability of solid self-nanoemulsifying drug delivery system loaded with simvastatin. Powder Technol. 2018;338:836–46.

    Article  CAS  Google Scholar 

  104. Moolakkadath T, Aqil M, Ahad A, Imam SS, Praveen A, Sultana Y, Mujeeb M, Iqbal Z. Fisetin loaded binary ethosomes for management of skin cancer by dermal application on UV exposed mice. Int J Pharm. 2019;560:78–91.

    Article  CAS  PubMed  Google Scholar 

  105. Chen Y, Wu Q, Song L, He T, Li Y, Li L, Su W, Liu L, Qian Z, Gong C. Polymeric micelles encapsulating fisetin improve the therapeutic effect in colon cancer. ACS Appl Mater Interfaces. 2015;7:534–42.

    Article  CAS  PubMed  Google Scholar 

  106. Plattt VM, Szoka FC. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm. 2008;5:474–86.

    Article  Google Scholar 

  107. Jakimiuk K, Szoka Ł, Surażyński A, Tomczyk M. Using flavonoid substitution status to predict anticancer effects in human melanoma cancers: an in vitro study. Cancers (Basel). 2024;16:487.

    Article  CAS  PubMed  Google Scholar 

  108. Mukhtar E, Adhami VM, Siddiqui IA, Verma AK, Mukhtar H. Fisetin enhances chemotherapeutic effect of cabazitaxel against human prostate cancer cells. Mol Cancer Ther. 2016;15:2863–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jafarzadeh S, Baharara J, Tehranipour M. Apoptosis induction with combined use of cisplatin and fisetin in cisplatin-resistant ovarian cancer cells (A2780). Avicenna J Med Biotechnol. 2021;13:176–82.

    PubMed  PubMed Central  Google Scholar 

  110. Tripathi R, Samadder T, Gupta S, Surolia A, Shaha C. Anticancer activity of a combination of cisplatin and fisetin in embryonal carcinoma cells and xenograft tumors. Mol Cancer Ther. 2011;10:255–68.

    Article  CAS  PubMed  Google Scholar 

  111. Boța M, Vlaia L, Jîjie A-R, Marcovici I, Crişan F, Oancea C, Dehelean CA, Mateescu T, Moacă E-A. Exploring synergistic interactions between natural compounds and conventional chemotherapeutic drugs in preclinical models of lung cancer. Pharmaceuticals. 2024;17:598.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ferreira de Oliveira JMP, Pacheco AR, Coutinho L, Oliveira H, Pinho S, Almeida L, Fernandes E, Santos C. Combination of etoposide and fisetin results in anti-cancer efficiency against osteosarcoma cell models. Arch Toxicol. 2018;92:1205–14.

    Article  CAS  PubMed  Google Scholar 

  113. Shi B, Wang L-F, Meng W-S, Chen L, Meng Z-L. Carnosic acid and fisetin combination therapy enhances inhibition of lung cancer through apoptosis induction. Int J Oncol. 2017;50:2123–35.

    Article  CAS  PubMed  Google Scholar 

  114. Bag S, Ghosal S, Karmakar S, Pramanik G, Bhowmik S. Uncovering the contrasting binding behavior of plant flavonoids fisetin and morin having subsidiary hydroxyl groups (−OH) with HRAS1 and HRAS2 i-Motif DNA structures: decoding the structural alterations and positional influences. ACS Omega. 2023;8:30315–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pal HC, Baxter RD, Hunt KM, Agarwal J, Elmets CA, Athar M, Afaq F. Fisetin, a phytochemical, potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells. Oncotarget. 2015;6:28296–311.

    Article  PubMed  PubMed Central  Google Scholar 

  116. McFadden M, Singh SK, Kinnel B, Varambally S, Singh R. The effect of paclitaxel- and fisetin-loaded PBM nanoparticles on apoptosis and reversal of drug resistance gene ABCG2 in ovarian cancer. J Ovarian Res. 2023;16:220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lin M-T, Lin C-L, Lin T-Y, Cheng C-W, Yang S-F, Lin C-L, Wu C-C, Hsieh Y-H, Tsai J-P. Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway. Tumor Biol. 2016;37:6987–96.

    Article  CAS  Google Scholar 

  118. Grüter T, Blusch A, Motte J, Sgodzai M, Bachir H, Klimas R, Ambrosius B, Gold R, Ellrichmann G, Pitarokoili K. Immunomodulatory and anti-oxidative effect of the direct TRPV1 receptor agonist capsaicin on Schwann cells. J Neuroinflammation. 2020;17:1–16.

    Article  Google Scholar 

  119. Zhuo W, Zhang L, Zhu Y, Zhu B, Chen Z. Fisetin, a dietary bioflavonoid, reverses acquired Cisplatin-resistance of lung adenocarcinoma cells through MAPK/Survivin/Caspase pathway. Am J Transl Res. 2015;7(10):2045–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Wu M-S, Lien G-S, Shen S-C, Yang L-Y, Chen Y-C. HSP90 inhibitors, geldanamycin and radicicol, enhance fisetin-induced cytotoxicity via induction of apoptosis in human colonic cancer cells. Evid Based Complement Altern Med. 2013;2013:1–11.

    Google Scholar 

  121. Smith ML, Murphy K, Doucette CD, Greenshields AL, Hoskin DW. The dietary flavonoid fisetin causes cell cycle arrest, caspase-dependent apoptosis, and enhanced cytotoxicity of chemotherapeutic drugs in triple-negative breast cancer cells. J Cell Biochem. 2016;117:1913–25.

    Article  CAS  PubMed  Google Scholar 

  122. Renault-Mahieux M, Vieillard V, Seguin J, Espeau P, Le DT, Lai-Kuen R, Mignet N, Paul M, Andrieux K. Co-encapsulation of fisetin and cisplatin into liposomes for glioma therapy: from formulation to cell evaluation. Pharmaceutics. 2021;13:970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jeng L, Kumar Velmurugan B, Chen M, Hsu H, Ho T, Day C, Lin Y, Padma VV, Tu C, Huang C. Fisetin mediated apoptotic cell death in parental and oxaliplatin/irinotecan resistant colorectal cancer cells in vitro and in vivo. J Cell Physiol. 2018;233:7134–42.

    Article  CAS  PubMed  Google Scholar 

  124. Yi C, Zhang Y, Yu Z, et al. Melatonin enhances the anti-tumor effect of fisetin by inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways. PLoS ONE. 2014;9:e99943.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zehra K, Banu A, Can E, Hülya C. Fisetin and/or capecitabine causes changes in apoptosis pathways in capecitabine-resistant colorectal cancer cell lines. Naunyn Schmiedebergs Arch Pharmacol. 2024. https://doi.org/10.1007/s00210-024-03145-0.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Lee W-R, Shen S-C, Lin H-Y, Hou W-C, Yang L-L, Chen Y-C. Wogonin and fisetin induce apoptosis in human promyeloleukemic cells, accompanied by a decrease of reactive oxygen species, and activation of caspase 3 and Ca2+-dependent endonuclease. Biochem Pharmacol. 2002;63:225–36.

    Article  CAS  PubMed  Google Scholar 

  127. Wu M, Lien G, Shen S, Yang L, Chen Y. N -acetyl- L -cysteine enhances fisetin-induced cytotoxicity via induction of ROS-independent apoptosis in human colonic cancer cells. Mol Carcinog. 2014. https://doi.org/10.1002/mc.22053.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Jeong D, Choi JM, Choi Y, Jeong K, Cho E, Jung S. Complexation of fisetin with novel cyclosophoroase dimer to improve solubility and bioavailability. Carbohydr Polym. 2013;97:196–202.

    Article  CAS  PubMed  Google Scholar 

  129. Jalalpour Choupanan M, Shahbazi S, Reiisi S. Naringenin in combination with quercetin/fisetin shows synergistic anti-proliferative and migration reduction effects in breast cancer cell lines. Mol Biol Rep. 2023;50:7489–500.

    Article  CAS  PubMed  Google Scholar 

  130. Karimzadeh MR, Ghahfarokhi MS, Heidari R, Reiisi S. Fisetin-metformin co-loaded in mesoporous silica nanoparticles (MSNs) inhibited triple negative breast cancer proliferation. Nanomedicine J. 2023;10:293.

    CAS  Google Scholar 

  131. Moustafa MA, El-Refaie WM, Elnaggar YSR, El-Mezayen NS, Awaad AK, Abdallah OY. Fucoidan/hyaluronic acid cross-linked zein nanoparticles loaded with fisetin as a novel targeted nanotherapy for oral cancer. Int J Biol Macromol. 2023;241:124528.

    Article  CAS  PubMed  Google Scholar 

  132. Farooqi AA, Naureen H, Zahid R, Youssef L, Attar R, Xu B. Cancer chemopreventive role of fisetin: regulation of cell signaling pathways in different cancers. Pharmacol Res. 2021;172:105784.

    Article  CAS  PubMed  Google Scholar 

  133. Farsad-Naeimi A, Alizadeh M, Esfahani A, Darvish Aminabad E. Effect of fisetin supplementation on inflammatory factors and matrix metalloproteinase enzymes in colorectal cancer patients. Food Funct. 2018;9:2025–31.

    Article  CAS  PubMed  Google Scholar 

  134. Pal HC, Hunt KM, Diamond A, Elmets CA, Afaq F. Phytochemicals for the management of melanoma. Mini Rev Med Chem. 2017. https://doi.org/10.2174/138955751715170907095822.

    Article  Google Scholar 

  135. Park B-S, Choi N-E, Lee JH, Kang H-M, Yu S-B, Kim H-J, Kang H-K, Kim I-R. Crosstalk between fisetin-induced apoptosis and autophagy in human oral squamous cell carcinoma. J Cancer. 2019;10:138–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Su C, Kuo C, Lu K, Yu F, Ma Y, Yang J, Chu Y, Chueh F, Liu K, Chung J. Fisetin-induced apoptosis of human oral cancer SCC-4 cells through reactive oxygen species production, endoplasmic reticulum stress, caspase-, and mitochondria-dependent signaling pathways. Environ Toxicol. 2017;32:1725–41.

    Article  CAS  PubMed  Google Scholar 

  137. Won D-H, Chung SH, Shin J-A, Hong K-O, Yang I-H, Yun J-W, Cho S-D. Induction of sestrin 2 is associated with fisetin-mediated apoptosis in human head and neck cancer cell lines. J Clin Biochem Nutr. 2019;64:97–105.

    Article  CAS  PubMed  Google Scholar 

  138. Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Ravula AR, Teegala SB, Kalakotla S, Pasangulapati JP, Perumal V, Boyina HK. Fisetin, potential flavonoid with multifarious targets for treating neurological disorders: an updated review. Eur J Pharmacol. 2021;910:174492.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to: Dr. Irina Zamfir, MD, RCP London, Basildon University Hospital UK for providing professional English editing of this manuscript and for editorial support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

RF, PS, MS, PP, RK, SSM, JS-R, DC made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis, and interpretation, or all these areas. That is revising or critically reviewing the article; giving final approval of the version to be published; agreeing on the journal to which the article has been submitted; and, confirming to be accountable for all aspects of the work.

Corresponding authors

Correspondence to Javad Sharifi-Rad or Daniela Calina.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Ethical approval and consent to participate

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatima, R., Soni, P., Sharma, M. et al. Fisetin as a chemoprotective and chemotherapeutic agent: mechanistic insights and future directions in cancer therapy. Med Oncol 42, 104 (2025). https://doi.org/10.1007/s12032-025-02664-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-025-02664-x

Keywords