Skip to main content

Advertisement

Log in

Deciphering FOXM1 regulation: implications for stemness and metabolic adaptations in glioblastoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The Forkhead box M1 (FOXM1) gene-mediated Wnt signaling pathway plays a significant role in the development and growth of glioblastoma multiforme (GBM), an exceptionally aggressive form of brain cancer. Our research explores the crucial involvement of the FOXM1 gene, a key transcription factor within the Wnt signaling pathway using bioinformatics techniques in both GBM and glioma stem cells (GSCs). Elevated FOXM1 gene expression is strongly associated with poor patient survival in GBM. Furthermore, FOXM1 gene expression is correlated with stemness-related factors, such as SOX2 and SOX9, which act as key drivers in the progression of cancer stem cells. Moreover, we specifically look into the direct associations of the FOXM1 gene with angiogenetic-related factors, metabolic genes, metastatic genes, pluripotency-related factors, immune cell infiltration, transcriptional networks, and functional category enrichment analysis, shedding light on the intricate molecular mechanisms involved in GBM initiation and progression. Additionally, our research identifies FOXM1-targeting miRNAs, revealing their potential as therapeutic candidates with implications for patient survival rates and DNA methylation patterns of the FOXM1 gene, uncovering insights into its epigenetic regulation. This knowledge contributes to a comprehensive understanding of the molecular landscape and potential avenues for developing more effective therapeutic approaches against GBM and GSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS, Villano JL. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2014;23(10):1985–96. https://doi.org/10.1158/1055-9965.EPI-14-0275.

    Article  CAS  Google Scholar 

  2. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–51. https://doi.org/10.1093/neuonc/noab106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lah TT, Novak M, Breznik B. Brain malignancies: glioblastoma and brain metastases. Semin Cancer Biol. 2020;60:262–73. https://doi.org/10.1016/j.semcancer.2019.10.010.

    Article  CAS  PubMed  Google Scholar 

  4. Bahmad HF, Elajami MK, El Zarif T, Bou-Gharios J, Abou-Antoun T, Abou-Kheir W. Drug repurposing towards targeting cancer stem cells in pediatric brain tumors. Cancer Metastasis Rev. 2020;39(1):127–48. https://doi.org/10.1007/s10555-019-09840-2.

    Article  CAS  PubMed  Google Scholar 

  5. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401. https://doi.org/10.1038/nature03128.

    Article  CAS  PubMed  Google Scholar 

  6. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of a cancer stem cell in human brain tumors. Can Res. 2003;63(18):5821–8.

    CAS  Google Scholar 

  7. Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review. Clin Transl Med. 2018;7(1):18. https://doi.org/10.1186/s40169-018-0198-1.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alves ALV, Gomes INF, Carloni AC, Rosa MN, da Silva LS, Evangelista AF, Reis RM, Silva VAO. Role of glioblastoma stem cells in cancer therapeutic resistance: a perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Res Ther. 2021;12(1):206. https://doi.org/10.1186/s13287-021-02231-x.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fiscon G, Conte F, Licursi V, Nasi S, Paci P. Computational identification of specific genes for glioblastoma stem-like cells identity. Sci Rep. 2018;8(1):7769. https://doi.org/10.1038/s41598-018-26081-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Clark KL, Halay ED, Lai E, Burley SK. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature. 1993;364(6436):412–20.

    Article  CAS  PubMed  Google Scholar 

  11. Korver W, Roose J, Clevers H. The winged-helix transcription factor trident is expressed in cycling cells. Nucleic Acids Res. 1997;25(9):1715–9. https://doi.org/10.1093/nar/25.9.1715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang X, Zhang L, Du Y, Zheng H, Zhang P, Sun Y, Wang Y, Chen J, Ding P, Wang N, Yang C, Huang T, Yao X, Qiao Q, Gu H, Cai G, Cai S, Zhou X, Hu W. A novel FOXM1 isoform, FOXM1D, promotes epithelial-mesenchymal transition and metastasis through ROCKs activation in colorectal cancer. Oncogene. 2017;36(6):807–19. https://doi.org/10.1038/onc.2016.249.

    Article  CAS  PubMed  Google Scholar 

  13. Barrett CL, DeBoever C, Jepsen K, Saenz CC, Carson DA, Frazer KA. Systematic transcriptome analysis reveals tumor-specific isoforms for ovarian cancer diagnosis and therapy. Proc Natl Acad Sci USA. 2015;112(23):E3050–7. https://doi.org/10.1073/pnas.1508057112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM, Zhai H, Vidal M, Gygi SP, Braun P, Sicinski P. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell. 2011;20(5):620–34. https://doi.org/10.1016/j.ccr.2011.10.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Littler DR, Alvarez-Fernández M, Stein A, Hibbert RG, Heidebrecht T, Aloy P, Medema RH, Perrakis A. Structure of the FOXM1 DNA-recognition domain bound to a promoter sequence. Nucleic Acids Res. 2010;38(13):4527–38. https://doi.org/10.1093/nar/gkq194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, Nair VS, Xu Y, Khuong A, Hoang CD, Diehn M, West RB, Plevritis SK, Alizadeh AA. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21(8):938–45. https://doi.org/10.1038/nm.3909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu C, Barger CJ, Karpf AR. FOXM1: a multifunctional oncoprotein and emerging therapeutic target in ovarian cancer. Cancers. 2021;13(12):3065. https://doi.org/10.3390/cancers13123065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kang K, Choi Y, Kim HH, Yoo KH, Yu S. Predicting FOXM1-mediated gene regulation through the analysis of genome-wide FOXM1 binding sites in MCF-7, K562, SK-N-SH, GM12878 and ECC-1 cell lines. Int J Mol Sci. 2020;21(17):6141. https://doi.org/10.3390/ijms21176141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou ZY, Han XY, Sun LQ, Li SY, Xue ST, Li ZR. Structure-based virtual screening identified novel FOXM1 inhibitors as the lead compounds for ovarian cancer. Front Chem. 2022;10:1058256. https://doi.org/10.3389/fchem.2022.1058256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5(1):8. https://doi.org/10.1038/s41392-020-0110-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bou Antoun N, Chioni AM. Dysregulated signalling pathways driving anticancer drug resistance. Int J Mol Sci. 2023;24(15):12222. https://doi.org/10.3390/ijms241512222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Katzenellenbogen BS, Guillen VS, Katzenellenbogen JA. Targeting the oncogenic transcription factor FOXM1 to improve outcomes in all subtypes of breast cancer. Breast Cancer Res. 2023;25:76. https://doi.org/10.1186/s13058-023-01675-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chesnokov MS, Halasi M, Borhani S, Arbieva Z, Shah BN, Oerlemans R, Khan I, Camacho CJ, Gartel AL. Novel FOXM1 inhibitor identified via gene network analysis induces autophagic FOXM1 degradation to overcome chemoresistance of human cancer cells. Cell Death Dis. 2021;12(7):704. https://doi.org/10.1038/s41419-021-03978-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Z, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH. Forkhead box M1 transcription factor: a novel target for cancer therapy. Cancer Treat Rev. 2010;36(2):151–6. https://doi.org/10.1016/j.ctrv.2009.11.006.

    Article  CAS  PubMed  Google Scholar 

  25. Priller M, Pöschl J, Abrão L, von Bueren AO, Cho YJ, Rutkowski S, Kretzschmar HA, Schüller U. Expression of FOXM1 is required for the proliferation of medulloblastoma cells and indicates worse survival of patients. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17(21):6791–801. https://doi.org/10.1158/1078-0432.CCR-11-1214.

    Article  CAS  Google Scholar 

  26. Li D, Wei P, Peng Z, Huang C, Tang H, Jia Z, Cui J, Le X, Huang S, Xie K. The critical role of dysregulated FOXM1-PLAUR signaling in human colon cancer progression and metastasis. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19(1):62–72. https://doi.org/10.1158/1078-0432.CCR-12-1588.

    Article  CAS  Google Scholar 

  27. Kong X, Li L, Li Z, Le X, Huang C, Jia Z, Cui J, Huang S, Wang L, Xie K. Dysregulated expression of FOXM1 isoforms drives progression of pancreatic cancer. Can Res. 2013;73(13):3987–96. https://doi.org/10.1158/0008-5472.CAN-12-3859.

    Article  CAS  Google Scholar 

  28. Kalin TV, Ustiyan V, Kalinichenko VV. Multiple faces of FOXM1 transcription factor: lessons from transgenic mouse models. Cell cycle (GeorgetownTex). 2011;10(3):396–405. https://doi.org/10.4161/cc.10.3.14709.

    Article  CAS  Google Scholar 

  29. Liu L, Michowski W, Kolodziejczyk A, Sicinski P. The cell cycle in stem cell proliferation, pluripotency and differentiation. Nat Cell Biol. 2019;21(9):1060–7. https://doi.org/10.1038/s41556-019-0384-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stevanovic M, Kovacevic-Grujicic N, Mojsin M, Milivojevic M, Drakulic D. SOX transcription factors and glioma stem cells: choosing between stemness and differentiation. World J Stem Cells. 2021;13(10):1417–45. https://doi.org/10.4252/wjsc.v13.i10.1417.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Castillo SD, Sanchez-Cespedes M. The SOX family of genes in cancer development: biological relevance and opportunities for therapy. Expert Opin Ther Targets. 2012;16(9):903–19. https://doi.org/10.1517/14728222.2012.709239.

    Article  CAS  PubMed  Google Scholar 

  32. Sarkar A, Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell. 2013;12(1):15–30. https://doi.org/10.1016/j.stem.2012.12.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang N, Wei P, Gong A, Chiu WT, Lee HT, Colman H, Huang H, Xue J, Liu M, Wang Y, Sawaya R, Xie K, Yung WK, Medema RH, He X, Huang S. FOXM1 promotes β-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell. 2011;20(4):427–42. https://doi.org/10.1016/j.ccr.2011.08.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee Y, Lee J, Lee S, Nam D. WNT signaling in glioblastoma and therapeutic opportunities. Lab Invest. 2016;96:137–50.

    Article  CAS  PubMed  Google Scholar 

  35. Ahir BK, Engelhard HH, Lakka SS. Tumor development and angiogenesis in adult brain tumor: glioblastoma. Mol Neurobiol. 2020;57(5):2461–78. https://doi.org/10.1007/s12035-020-01892-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Du R, Petritsch C, Lu K, Liu P, Haller A, Ganss R, Song H, Vandenberg S, Bergers G. Matrix metalloproteinase-2 regulates vascular patterning and growth affecting tumor cell survival and invasion in GBM. Neuro Oncol. 2008;10(3):254–64. https://doi.org/10.1215/15228517-2008-001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, Hawkins C, Guha A. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 2011;208(2):313–26. https://doi.org/10.1084/jem.20101470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jin X, Dai L, Ma Y, Wang J, Liu Z. Implications of HIF-1α in the tumorigenesis and progression of pancreatic cancer. Cancer Cell Int. 2020;20:273. https://doi.org/10.1186/s12935-020-01370-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol. 2018;80:50–64. https://doi.org/10.1016/j.semcdb.2017.05.023.

    Article  CAS  PubMed  Google Scholar 

  40. Hirayama D, Iida T, Nakase H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int J Mol Sci. 2017;19(1):92. https://doi.org/10.3390/ijms19010092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4. https://doi.org/10.1158/2159-8290.CD-12-0095.

    Article  PubMed  Google Scholar 

  42. GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580–5. https://doi.org/10.1038/ng.2653.

    Article  CAS  Google Scholar 

  43. Agrawal K, Chauhan S, Kumar D. Expression analysis and regulation of GLI and its correlation with stemness and metabolic alteration in human brain tumor. 3 Biotech. 2023;13(1):10. https://doi.org/10.1007/s13205-022-03419-5.

    Article  PubMed  Google Scholar 

  44. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia (New York, NY). 2022;25:18–27. https://doi.org/10.1016/j.neo.2022.01.001.

    Article  CAS  Google Scholar 

  45. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, Zhu J, Haussler D. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38(6):675–8. https://doi.org/10.1038/s41587-020-0546-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;46(D1):D956–63. https://doi.org/10.1093/nar/gkx1090.

    Article  CAS  PubMed  Google Scholar 

  47. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–60. https://doi.org/10.1093/nar/gkz430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Franz M, Rodriguez H, Lopes C, Zuberi K, Montojo J, Bader GD, Morris Q. GeneMANIA update 2018. Nucleic Acids Res. 2018;46(W1):W60–4. https://doi.org/10.1093/nar/gky311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13. https://doi.org/10.1093/nar/gky1131.

    Article  CAS  PubMed  Google Scholar 

  50. Feng C, Song C, Liu Y, Qian F, Gao Y, Ning Z, Wang Q, Jiang Y, Li Y, Li M, Chen J, Zhang J, Li C. KnockTF: a comprehensive human gene expression profile database with knockdown/knockout of transcription factors. Nucleic Acids Res. 2020;48(D1):D93-100. https://doi.org/10.1093/nar/gkz881.

    Article  CAS  PubMed  Google Scholar 

  51. Evangelista JE, Xie Z, Marino GB, Nguyen N, Clarke DJB, Ma’ayan A. Enrichr-KG: bridging enrichment analysis across multiple libraries. Nucleic Acids Res. 2023;51(W1):W168–79. https://doi.org/10.1093/nar/gkad393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, Furlong LI. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020;48(D1):D845–55. https://doi.org/10.1093/nar/gkz1021.

    Article  CAS  PubMed  Google Scholar 

  53. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Can Res. 2017;77(21):e108–10. https://doi.org/10.1158/0008-5472.CAN-17-0307.

    Article  CAS  Google Scholar 

  54. Kavakiotis I, Alexiou A, Tastsoglou S, Vlachos IS, Hatzigeorgiou AG. DIANA-miTED: a microRNA tissue expression database. Nucleic Acids Res. 2022;50(D1):D1055–61. https://doi.org/10.1093/nar/gkab733.

    Article  CAS  PubMed  Google Scholar 

  55. Dweep H, Gretz N, Sticht C. miRWalk database for miRNA-target interactions. Methods Mol Biol (Clifton, NJ). 2014;1182:289–305. https://doi.org/10.1007/978-1-4939-1062-5_25.

    Article  CAS  Google Scholar 

  56. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xie C, Leung YK, Chen A, Long DX, Hoyo C, Ho SM. Differential methylation values in differential methylation analysis. Bioinformatics (Oxford, England). 2019;35(7):1094–7. https://doi.org/10.1093/bioinformatics/bty778.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Kumari Swati, Saniya Arfin, Kirti Agrawal, Saurabh Kumar Jha and Ramya Lakshmi Rajendran drafted, wrote, and edited this manuscript. Anand Prakash, Dhruv Kumar, Prakash Gangadaran and Byeong-Cheol Ahn edited and supervised this manuscript.

Corresponding authors

Correspondence to Anand Prakash, Dhruv Kumar, Prakash Gangadaran or Byeong-Cheol Ahn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swati, K., Arfin, S., Agrawal, K. et al. Deciphering FOXM1 regulation: implications for stemness and metabolic adaptations in glioblastoma. Med Oncol 42, 88 (2025). https://doi.org/10.1007/s12032-025-02639-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-025-02639-y

Keywords