Skip to main content

Advertisement

Log in

Immunomodulation aspects of gut microbiome-related interventional strategies in colorectal cancer

  • Review
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC), the third most common cancer worldwide, develops mainly due to the accumulation of genetic and epigenetic changes over many years. Substantial evidence suggests that gut microbiota plays a significant role in the initiation, progression, and control of CRC, depending on the balance between beneficial and pathogenic microorganisms. Nonetheless, gut microbiota composition by regulating the host immune response may either promote or inhibit CRC. Thus, modification of gut microbiota potentially impacts clinical outcomes of immunotherapy. Previous studies have indicated that therapeutic strategies such as probiotics, prebiotics, and postbiotics enhance the intestinal immune system and improve the efficacy of immunotherapeutic agents, potentially serving as a complementary strategy in cancer immunotherapy. This review discusses the role of the gut microbiota in the onset and development of CRC in relation to the immune response. Additionally, we focus on the effect of strategies manipulating gut microbiome on the immune response and efficacy of immunotherapy against CRC. We demonstrate that manipulation of gut microbiome can enhance immune response and outcomes of immunotherapy through downregulating Treg cells and other immunosuppressive cells while improving the function of T cells within the tumor; however, further research, especially clinical trials, are needed to evaluate its efficacy in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study. No datasets were generated or analysed during the current study.

References

  1. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941–53.

    Article  PubMed  CAS  Google Scholar 

  2. Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol. 2021;14(10):101174.

    Article  PubMed  PubMed Central  Google Scholar 

  3. De Almeida CV, de Camargo MR, Russo E, Amedei A. Role of diet and gut microbiota on colorectal cancer immunomodulation. World J Gastroenterol. 2019;25(2):151.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hofseth LJ, Hebert JR, Chanda A, Chen H, Love BL, Pena MM, et al. Early-onset colorectal cancer: initial clues and current views. Nat Rev Gastroenterol Hepatol. 2020;17(6):352–64.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Macrae FA. Colorectal cancer: Epidemiology, risk factors, and protective factors. Uptodate com [ažurirano 9 lipnja 2017. 2016.

  6. Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, et al. A new genomic blueprint of the human gut microbiota. Nature. 2019;568(7753):499–504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Davis CD, Milner JA. Gastrointestinal microflora, food components and colon cancer prevention. J Nutr Biochem. 2009;20(10):743–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Malard F, Dore J, Gaugler B, Mohty M. Introduction to host microbiome symbiosis in health and disease. Mucosal Immunol. 2021;14(3):547–54.

    Article  PubMed  CAS  Google Scholar 

  9. Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 2014;16(7):1024–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Alizadehmohajer N, Shojaeifar S, Nedaeinia R, Esparvarinha M, Mohammadi F, Ferns GA, et al. Association between the microbiota and women’s cancers–Cause or consequences? Biomed Pharmacother. 2020;127:110203.

    Article  PubMed  CAS  Google Scholar 

  11. Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nature Rev Gastroenterol Hepatol. 2019;16(11):690–704. https://doi.org/10.1038/s41575-019-0209-8.

    Article  CAS  Google Scholar 

  12. Mizutani S, Yamada T, Yachida S. Significance of the gut microbiome in multistep colorectal carcinogenesis. Cancer Sci. 2020;111(3):766–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Torres-Maravilla E, Boucard A-S, Mohseni AH, Taghinezhad-S S, Cortes-Perez NG, Bermúdez-Humarán LG. Role of gut microbiota and probiotics in colorectal cancer: onset and progression. Microorganisms. 2021;9(5):1021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Cani PD, Plovier H, Van Hul M, Geurts L, Delzenne NM, Druart C, et al. Endocannabinoids—at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol. 2016;12(3):133–43.

    Article  PubMed  CAS  Google Scholar 

  15. Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012;6(2):320–9.

    Article  PubMed  CAS  Google Scholar 

  16. Viljoen KS, Dakshinamurthy A, Goldberg P, Blackburn JM. Quantitative profiling of colorectal cancer-associated bacteria reveals associations between Fusobacterium spp., enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer. PLoS ONE. 2015;10(3):e0119462.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hashemi Goradel N, Heidarzadeh S, Jahangiri S, Farhood B, Mortezaee K, Khanlarkhani N, et al. Fusobacterium nucleatum and colorectal cancer: a mechanistic overview. J Cell Physiol. 2019;234(3):2337–44.

    Article  PubMed  CAS  Google Scholar 

  18. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14(2):207–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42(2):344–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Deng Z, Mu J, Tseng M, Wattenberg B, Zhuang X, Egilmez NK, et al. Enterobacteria-secreted particles induce production of exosome-like S1P-containing particles by intestinal epithelium to drive Th17-mediated tumorigenesis. Nat Commun. 2015;6(1):6956.

    Article  PubMed  CAS  Google Scholar 

  21. Chung L, Thiele Orberg E, Geis AL, Chan JL, Fu K, DeStefano Shields CE, et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe. 2018;23(2):203-14.e5. https://doi.org/10.1016/j.chom.2018.01.007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Li R, Zhou R, Wang H, Li W, Pan M, Yao X, et al. Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ. 2019;26(11):2447–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bertocchi A, Carloni S, Ravenda PS, Bertalot G, Spadoni I, Cascio AL, et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell. 2021;39(5):708-24. e11.

    Article  PubMed  CAS  Google Scholar 

  24. Nougayrède J-P, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science. 2006;313(5788):848–51.

    Article  PubMed  Google Scholar 

  25. Deng Q, Wang C, Yu K, Wang Y, Yang Q, Zhang J, et al. Streptococcus bovis contributes to the development of colorectal cancer via recruiting CD11b+ TLR-4+ cells. Med Sci Monit: Int Med J Exp Clin Res. 2020;26:e921886–91.

    Article  CAS  Google Scholar 

  26. Kim J, Lee HK. Potential role of the gut microbiome in colorectal cancer progression. Front Immunol. 2022;12:807648.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Attene-Ramos MS, Wagner ED, Gaskins HR, Plewa MJ. Hydrogen sulfide induces direct radical-associated DNA damage. Mol Cancer Res. 2007;5(5):455–9.

    Article  PubMed  CAS  Google Scholar 

  28. Marquet P, Duncan SH, Chassard C, Bernalier-Donadille A, Flint HJ. Lactate has the potential to promote hydrogen sulphide formation in the human colon. FEMS Microbiol Lett. 2009;299(2):128–34.

    Article  PubMed  CAS  Google Scholar 

  29. Todoric J, Antonucci L, Karin M. Targeting inflammation in cancer prevention and therapy. Cancer Prev Res. 2016;9(12):895–905.

    Article  CAS  Google Scholar 

  30. Savari S, Vinnakota K, Zhang Y, Sjölander A. Cysteinyl leukotrienes and their receptors: bridging inflammation and colorectal cancer. World J Gastroenterol: WJG. 2014;20(4):968.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tripathy A, Dash J, Kancharla S, Kolli P, Mahajan D, Senapati S, et al. Probiotics: a promising candidate for management of colorectal cancer. Cancers. 2021;13(13):3178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 2016;65(12):1973–80.

    Article  PubMed  CAS  Google Scholar 

  33. Flanagan L, Schmid J, Ebert M, Soucek P, Kunicka T, Liska V, et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis. 2014;33:1381–90.

    Article  PubMed  CAS  Google Scholar 

  34. Chen S, Su T, Zhang Y, Lee A, He J, Ge Q, et al. Fusobacterium nucleatum promotes colorectal cancer metastasis by modulating KRT7-AS/KRT7. Gut microbes. 2020;11(3):511–25.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lee D-W, Han S-W, Kang J-K, Bae JM, Kim H-P, Won J-K, et al. Association between Fusobacterium nucleatum, pathway mutation, and patient prognosis in colorectal cancer. Ann Surg Oncol. 2018;25:3389–95.

    Article  PubMed  Google Scholar 

  36. Ranjbar M, Salehi R, Haghjooy Javanmard S, Rafiee L, Faraji H, Jafarpor S, et al. The dysbiosis signature of Fusobacterium nucleatum in colorectal cancer-cause or consequences? A Syst Rev Cancer Cell Int. 2021;21:1–24.

    Google Scholar 

  37. Rubinstein MR, Baik JE, Lagana SM, Han RP, Raab WJ, Sahoo D, et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1. EMBO Rep. 2019;20(4):e47638.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mima K, Sukawa Y, Nishihara R, Qian ZR, Yamauchi M, Inamura K, et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 2015;1(5):653–61.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xue Y, Xiao H, Guo S, Xu B, Liao Y, Wu Y, et al. Indoleamine 2, 3-dioxygenase expression regulates the survival and proliferation of Fusobacterium nucleatum in THP-1-derived macrophages. Cell Death Dis. 2018;9(3):355.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ye X, Wang R, Bhattacharya R, Boulbes DR, Fan F, Xia L, et al. Fusobacterium nucleatum subspecies animalis influences proinflammatory cytokine expression and monocyte activation in human colorectal tumors. Cancer Prev Res. 2017;10(7):398–409.

    Article  CAS  Google Scholar 

  41. Bonnet M, Buc E, Sauvanet P, Darcha C, Dubois D, Pereira B, et al. Colonization of the human gut by E. coli and colorectal cancer risk. Clin Cancer Res: Off J Am Assoc Cancer Res. 2014;20(4):859–67. https://doi.org/10.1158/1078-0432.ccr-13-1343.

    Article  Google Scholar 

  42. Mirsepasi-Lauridsen HC, Vallance BA, Krogfelt KA, Petersen AM. Escherichia coli pathobionts associated with inflammatory bowel disease. Clin Microbiol Rev. 2019. https://doi.org/10.1128/cmr.00060-18.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sears CL. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev. 2009;22(2):349–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Purcell RV, Pearson J, Aitchison A, Dixon L, Frizelle FA, Keenan JI. Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS ONE. 2017;12(2):e0171602. https://doi.org/10.1371/journal.pone.0171602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Toprak NU, Yagci A, Gulluoglu BM, Akin ML, Demirkalem P, Celenk T, et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect: Off Publ Eur Soc Clin Microbiol Infect Dis. 2006;12(8):782–6. https://doi.org/10.1111/j.1469-0691.2006.01494.x.

    Article  CAS  Google Scholar 

  46. Sears CL, Geis AL, Housseau F. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J Clin Invest. 2014;124(10):4166–72. https://doi.org/10.1172/jci72334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Tsai C-E, Chiu C-T, Rayner CK, Wu K-L, Chiu Y-C, Hu M-L, et al. Associated factors in Streptococcus bovis bacteremia and colorectal cancer. Kaohsiung J Med Sci. 2016;32(4):196–200.

    Article  PubMed  Google Scholar 

  48. Pasquereau-Kotula E, Martins M, Aymeric L, Dramsi S. Significance of Streptococcus gallolyticus subsp. gallolyticus association with colorectal cancer. Front microbiol. 2018;9:614.

    Article  PubMed  PubMed Central  Google Scholar 

  49. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.

    Article  PubMed  CAS  Google Scholar 

  50. Yazici C, Wolf PG, Kim H, Cross T-WL, Vermillion K, Carroll T, et al. Race-dependent association of sulfidogenic bacteria with colorectal cancer. Gut. 2017;66(11):1983–94.

    Article  PubMed  CAS  Google Scholar 

  51. Chen W, Liu F, Ling Z, Tong X, Xiang C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS ONE. 2012;7(6):e39743.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Attene-Ramos MS, Wagner ED, Plewa MJ, Gaskins HR. Evidence that hydrogen sulfide is a genotoxic agent. Mol Cancer Res. 2006;4(1):9–14.

    Article  PubMed  CAS  Google Scholar 

  53. Pal VK, Bandyopadhyay P, Singh A. Hydrogen sulfide in physiology and pathogenesis of bacteria and viruses. IUBMB Life. 2018;70(5):393–410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Jacouton E, Chain F, Sokol H, Langella P, Bermudez-Humaran LG. Probiotic strain Lactobacillus casei BL23 prevents colitis-associated colorectal cancer. Front Immunol. 2017;8:1553.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tiptiri-Kourpeti A, Spyridopoulou K, Santarmaki V, Aindelis G, Tompoulidou E, Lamprianidou EE, et al. Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. PLoS ONE. 2016;11(2):e0147960.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Aindelis G, Tiptiri-Kourpeti A, Lampri E, Spyridopoulou K, Lamprianidou E, Kotsianidis I, et al. Immune responses raised in an experimental colon carcinoma model following oral administration of Lactobacillus casei. Cancers. 2020;12(2):368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Casas-Solís J, Huizar-López MdR, Irecta-Nájera CA, Pita-López ML, Santerre A. Immunomodulatory effect of Lactobacillus casei in a murine model of colon carcinogenesis. Probiotics Antimicrob Proteins. 2020;12(3):1012–24.

    Article  PubMed  Google Scholar 

  58. Wang T, Zhang L, Wang P, Liu Y, Wang G, Shan Y, et al. Lactobacillus coryniformis MXJ32 administration ameliorates azoxymethane/dextran sulfate sodium-induced colitis-associated colorectal cancer via reshaping intestinal microenvironment and alleviating inflammatory response. Eur J Nutr. 2022;61(1):85–99.

    Article  PubMed  CAS  Google Scholar 

  59. Zhuo Q, Yu B, Zhou J, Zhang J, Zhang R, Xie J, et al. Lysates of Lactobacillus acidophilus combined with CTLA-4-blocking antibodies enhance antitumor immunity in a mouse colon cancer model. Sci Rep. 2019;9(1):20128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Chen L, Zou Y, Peng J, Lu F, Yin Y, Li F, et al. Lactobacillus acidophilus suppresses colitis-associated activation of the IL-23/Th17 axis. J Immunol Res. 2015;2015:909514.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Urbanska AM, Bhathena J, Cherif S, Prakash S. Orally delivered microencapsulated probiotic formulation favorably impacts polyp formation in APC (Min/+) model of intestinal carcinogenesis. Artificial cells, Nanomed Biotechnol. 2016;44(1):1–11.

    Article  CAS  Google Scholar 

  62. Chen C-C, Lin W-C, Kong M-S, Shi HN, Walker WA, Lin C-Y, et al. Oral inoculation of probiotics Lactobacillus acidophilus NCFM suppresses tumour growth both in segmental orthotopic colon cancer and extra-intestinal tissue. Br J Nutr. 2012;107(11):1623–34.

    Article  PubMed  CAS  Google Scholar 

  63. Agah S, Alizadeh AM, Mosavi M, Ranji P, Khavari-Daneshvar H, Ghasemian F, et al. More protection of Lactobacillus acidophilus than Bifidobacterium bifidum probiotics on azoxymethane-induced mouse colon cancer. Probiotics and antimicrobial proteins. 2019;11:857–64.

    Article  PubMed  CAS  Google Scholar 

  64. Lee HA, Kim H, Lee K-W, Park K-Y. Dead nano-sized Lactobacillus plantarum inhibits azoxymethane/dextran sulfate sodium-induced colon cancer in Balb/c mice. J Med Food. 2015;18(12):1400–5.

    Article  PubMed  CAS  Google Scholar 

  65. Hu J, Wang C, Ye L, Yang W, Huang H, Meng F, et al. Anti-tumour immune effect of oral administration of Lactobacillus plantarum to CT26 tumour-bearing mice. J Biosci. 2015;40:269–79.

    Article  PubMed  CAS  Google Scholar 

  66. Lopez M, Li N, Kataria J, Russell M, Neu J. Live and ultraviolet-inactivated Lactobacillus rhamnosus GG decrease flagellin-induced interleukin-8 production in Caco-2 cells. J Nutr. 2008;138(11):2264–8.

    Article  PubMed  CAS  Google Scholar 

  67. Gamallat Y, Meyiah A, Kuugbee ED, Hago AM, Chiwala G, Awadasseid A, et al. Lactobacillus rhamnosus induced epithelial cell apoptosis, ameliorates inflammation and prevents colon cancer development in an animal model. Biomed Pharmacother. 2016;83:536–41.

    Article  PubMed  CAS  Google Scholar 

  68. Owens JA, Saeedi BJ, Naudin CR, Hunter-Chang S, Barbian ME, Eboka RU, et al. Lactobacillus rhamnosus GG orchestrates an antitumor immune response. Cell Mol Gastroenterol Hepatol. 2021;12(4):1311–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Jeon SG, Kayama H, Ueda Y, Takahashi T, Asahara T, Tsuji H, et al. Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon. PLoS Pathog. 2012;8(5):e1002714.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Yang X, Cao Q, Ma B, Xia Y, Liu M, Tian J, et al. Probiotic powder ameliorates colorectal cancer by regulating Bifidobacterium animalis, Clostridium cocleatum, and immune cell composition. PLoS ONE. 2023;18(3):e0277155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Chen Z-F, Ai L-Y, Wang J-L, Ren L-L, Yu Y-N, Xu J, et al. Probiotics Clostridium butyricum and Bacillus subtilis ameliorate intestinal tumorigenesis. Future Microbiol. 2015;10(9):1433–45.

    Article  PubMed  Google Scholar 

  72. Zhou M, Yuan W, Yang B, Pei W, Ma J, Feng Q. Clostridium butyricum inhibits the progression of colorectal cancer and alleviates intestinal inflammation via the myeloid differentiation factor 88 (MyD88)-nuclear factor-kappa B (NF-κB) signaling pathway. Ann Transl Med. 2022;10(8):478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Gianotti L, Morelli L, Galbiati F, Rocchetti S, Coppola S, Beneduce A, et al. A randomized double-blind trial on perioperative administration of probiotics in colorectal cancer patients. World J Gastroenterol: WJG. 2010;16(2):167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Zaharuddin L, Mokhtar NM, Muhammad Nawawi KN, Raja Ali RA. A randomized double-blind placebo-controlled trial of probiotics in post-surgical colorectal cancer. BMC Gastroenterol. 2019;19(1):1–8.

    Article  CAS  Google Scholar 

  75. Hradicka P, Beal J, Kassayova M, Foey A, Demeckova V. A novel lactic acid bacteria mixture: macrophage-targeted prophylactic intervention in colorectal cancer management. Microorganisms. 2020;8(3):387.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Sichetti M, De Marco S, Pagiotti R, Traina G, Pietrella D. Anti-inflammatory effect of multistrain probiotic formulation (L. rhamnosus, B. lactis, and B. longum). Nutrition. 2018;53:95–102.

    Article  PubMed  CAS  Google Scholar 

  77. Si W, Liang H, Bugno J, Xu Q, Ding X, Yang K, et al. Lactobacillus rhamnosus GG induces cGAS/STING-dependent type I interferon and improves response to immune checkpoint blockade. Gut. 2022;71(3):521–33.

    Article  PubMed  CAS  Google Scholar 

  78. Routy B, Le Chatelier E, Derosa L, Duong CP, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–7.

    Article  PubMed  CAS  Google Scholar 

  79. Ansaldo E, Slayden LC, Ching KL, Koch MA, Wolf NK, Plichta DR, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science. 2019;364(6446):1179–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Xu H, Luo H, Zhang J, Li K, Lee M-H. Therapeutic potential of Clostridium butyricum anticancer effects in colorectal cancer. Gut Microbes. 2023;15(1):2186114.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Shi Y, Zheng W, Yang K, Harris KG, Ni K, Xue L, et al. Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling. J Exp Med. 2020;217(5):e20192282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Molska M, Reguła J. Potential mechanisms of probiotics action in the prevention and treatment of colorectal cancer. Nutrients. 2019;11(10):2453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Galdeano CM, Perdigon G. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol. 2006;13(2):219–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Cortes-Perez NG, de Moreno de LeBlanc A, Gomez-Gutierrez JG, LeBlanc JG, Bermúdez-Humarán LG. Probiotics and trained immunity. Biomolecules. 2021;11(10):1402.

  85. Evrard B, Coudeyras S, Dosgilbert A, Charbonnel N, Alamé J, Tridon A, et al. Dose-dependent immunomodulation of human dendritic cells by the probiotic Lactobacillus rhamnosus Lcr35. PLoS ONE. 2011;6(4):e18735.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Wang L, Yu K, Zhang X, Yu S. Dual functional roles of the MyD88 signaling in colorectal cancer development. Biomed Pharmacother. 2018;107:177–84.

    Article  PubMed  CAS  Google Scholar 

  87. Zhu G, Cheng Z, Huang Y, Zheng W, Yang S, Lin C, et al. MyD88 mediates colorectal cancer cell proliferation, migration and invasion via NF-κB/AP-1 signaling pathway. Int J Mol Med. 2020;45(1):131–40.

    PubMed  CAS  Google Scholar 

  88. Perkins ND. The diverse and complex roles of NF-κB subunits in cancer. Nat Rev Cancer. 2012;12(2):121–32.

    Article  PubMed  CAS  Google Scholar 

  89. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science. 2015;350(6264):1084–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews M, Karpinets T, et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103.

    Article  PubMed  CAS  Google Scholar 

  91. Kim SH, Lim YJ. The role of microbiome in colorectal carcinogenesis and its clinical potential as a target for cancer treatment. Intestinal Research. 2022;20(1):31–42.

    Article  PubMed  Google Scholar 

  92. Dwivedi M, Kumar P, Laddha NC, Kemp EH. Induction of regulatory T cells: a role for probiotics and prebiotics to suppress autoimmunity. Autoimmun Rev. 2016;15(4):379–92.

    Article  PubMed  CAS  Google Scholar 

  93. Xie X, He Y, Li H, Yu D, Na L, Sun T, et al. Effects of prebiotics on immunologic indicators and intestinal microbiota structure in perioperative colorectal cancer patients. Nutrition. 2019;61:132–42.

    Article  PubMed  CAS  Google Scholar 

  94. Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr. 2008;101(4):541–50.

    Article  PubMed  Google Scholar 

  95. Le Bastard Q, Chapelet G, Javaudin F, Lepelletier D, Batard E, Montassier E. The effects of inulin on gut microbial composition: a systematic review of evidence from human studies. Eur J Clin Microbiol Infect Dis. 2020;39:403–13.

    Article  PubMed  Google Scholar 

  96. Wu RY, Määttänen P, Napper S, Scruten E, Li B, Koike Y, et al. Non-digestible oligosaccharides directly regulate host kinome to modulate host inflammatory responses without alterations in the gut microbiota. Microbiome. 2017;5:1–15.

    Article  Google Scholar 

  97. Chu H, Tao X, Sun Z, Hao W, Wei X. Galactooligosaccharides protects against DSS-induced murine colitis through regulating intestinal flora and inhibiting NF-κB pathway. Life Sci. 2020;242:117220.

    Article  PubMed  CAS  Google Scholar 

  98. Shoaf K, Mulvey GL, Armstrong GD, Hutkins RW. Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infect Immun. 2006;74(12):6920–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Searle LE, Cooley WA, Jones G, Nunez A, Crudgington B, Weyer U, et al. Purified galactooligosaccharide, derived from a mixture produced by the enzymic activity of Bifidobacterium bifidum, reduces Salmonella enterica serovar Typhimurium adhesion and invasion in vitro and in vivo. J Med Microbiol. 2010;59(12):1428–39.

    Article  PubMed  CAS  Google Scholar 

  100. Verediano TA, Viana ML, das Graças Vaz Tostes M, de Oliveira DS, de Carvalho Nunes L, Costa NM. Yacón (Smallanthus sonchifolius) prevented inflammation, oxidative stress, and intestinal alterations in an animal model of colorectal carcinogenesis. J Sci Food Agric. 2020;100(15):5442–9.

    Article  PubMed  CAS  Google Scholar 

  101. Ito H, Takemura N, Sonoyama K, Kawagishi H, Topping DL, Conlon MA, et al. Degree of polymerization of inulin-type fructans differentially affects number of lactic acid bacteria, intestinal immune functions, and immunoglobulin A secretion in the rat cecum. J Agric Food Chem. 2011;59(10):5771–8.

    Article  PubMed  CAS  Google Scholar 

  102. Fransen F, Sahasrabudhe NM, Elderman M, Bosveld M, El Aidy S, Hugenholtz F, et al. β2→ 1-fructans modulate the immune system in vivo in a microbiota-dependent and-independent fashion. Front Immunol. 2017;8:154.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Khan I, Huang G, Li X-a, Liao W, Leong WK, Xia W, et al. Mushroom polysaccharides and jiaogulan saponins exert cancer preventive effects by shaping the gut microbiota and microenvironment in ApcMin/+ mice. Pharmacol Res. 2019; 148:104448.

  104. Guo M, Li Z, Huang Y, Shi M. Polysaccharides from Nostoc commune Vaucher activate macrophages via NF-κB and AKT/JNK1/2 pathways to suppress colorectal cancer growth in vivo. Food Funct. 2019;10(7):4269–79.

    Article  PubMed  CAS  Google Scholar 

  105. Bennedsen AL, Furbo S, Bjarnsholt T, Raskov H, Gögenur I, Kvich L. The gut microbiota can orchestrate the signaling pathways in colorectal cancer. APMIS. 2022;130(3):121–39.

    Article  PubMed  CAS  Google Scholar 

  106. Wang Y, Zeng Y, Zhu L, Wan J, Lei N, Yao X, et al. Polysaccharides from Lentinus edodes inhibits lymphangiogenesis via the toll-like receptor 4/JNK pathway of cancer-associated fibroblasts. Front Oncol. 2021;10:547683.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Prajapati N, Patel J, Singh S, Yadav VK, Joshi C, Patani A, et al. Postbiotic production: harnessing the power of microbial metabolites for health applications. Front Microbiol. 2023;14:1306192.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Eslami M, Yousefi B, Kokhaei P, Hemati M, Nejad ZR, Arabkari V, et al. Importance of probiotics in the prevention and treatment of colorectal cancer. J Cell Physiol. 2019;234(10):17127–43.

    Article  PubMed  CAS  Google Scholar 

  109. Cruz BC, Sarandy MM, Messias AC, Gonçalves RV, Ferreira CL, Peluzio MC. Preclinical and clinical relevance of probiotics and synbiotics in colorectal carcinogenesis: a systematic review. Nutr Rev. 2020;78(8):667–87.

    Article  PubMed  Google Scholar 

  110. Marcon LDN, de Sousa Moraes LF, dos Santos Cruz BC, de Oliveira Teixeira MD, Bruno TCV, Ribeiro IE, et al. Yacon (Smallanthus sonchifolius)-based product increases fecal short-chain fatty acids and enhances regulatory T cells by downregulating RORγt in the colon of BALB/c mice. J Funct Foods. 2019;55:333–42.

    Article  CAS  Google Scholar 

  111. Tamanai-Shacoori Z, Smida I, Bousarghin L, Loreal O, Meuric V, Fong SB, et al. Roseburia spp.: a marker of health? Future Microbiol. 2017;12(2):157–70.

    Article  PubMed  CAS  Google Scholar 

  112. Uchiyama K, Sakiyama T, Hasebe T, Musch MW, Miyoshi H, Nakagawa Y, et al. Butyrate and bioactive proteolytic form of Wnt-5a regulate colonic epithelial proliferation and spatial development. Sci Rep. 2016;6(1):32094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Nastasi C, Candela M, Bonefeld CM, Geisler C, Hansen M, Krejsgaard T, et al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci Rep. 2015;5(1):16148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Inan MS, Rasoulpour RJ, Yin L, Hubbard AK, Rosenberg DW, Giardina C. The luminal short-chain fatty acid butyrate modulates NF-κB activity in a human colonic epithelial cell line. Gastroenterology. 2000;118(4):724–34.

    Article  PubMed  CAS  Google Scholar 

  115. Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP, Browning DD, et al. GPR109A is a G-protein–coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Can Res. 2009;69(7):2826–32.

    Article  CAS  Google Scholar 

  116. Arpaia N, Campbell C, Fan X, Dikiy S, Van Der Veeken J, Deroos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-y M, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–73.

    Article  PubMed  CAS  Google Scholar 

  118. Chen GY. The role of the gut microbiome in colorectal cancer. Clin Colon Rectal Surg. 2018;31(03):192–8.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci. 2014;111(6):2247–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Scott NA, Andrusaite A, Andersen P, Lawson M, Alcon-Giner C, Leclaire C, et al. Antibiotics induce sustained dysregulation of intestinal T cell immunity by perturbing macrophage homeostasis. Sci Transl Med. 2018;10(464):eaao4755.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ji J, Shu D, Zheng M, Wang J, Luo C, Wang Y, et al. Microbial metabolite butyrate facilitates M2 macrophage polarization and function. Sci Rep. 2016;6(1):24838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–18.

    Article  PubMed  CAS  Google Scholar 

  123. Lee YK, Mazmanian SK. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science. 2010;330(6012):1768–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Chan JL, Wu S, Geis AL, Chan GV, Gomes TA, Beck SE, et al. Non-toxigenic Bacteroides fragilis (NTBF) administration reduces bacteria-driven chronic colitis and tumor development independent of polysaccharide A. Mucosal Immunol. 2019;12(1):164–77.

    Article  PubMed  CAS  Google Scholar 

  125. Sugimura N, Li Q, Chu ESH, Lau HCH, Fong W, Liu W, et al. Lactobacillus gallinarum modulates the gut microbiota and produces anti-cancer metabolites to protect against colorectal tumourigenesis. Gut. 2022;71(10):2011–21.

    Article  CAS  Google Scholar 

  126. Zhang Q, Zhao Q, Li T, Lu L, Wang F, Zhang H, et al. Lactobacillus plantarum-derived indole-3-lactic acid ameliorates colorectal tumorigenesis via epigenetic regulation of CD8+ T cell immunity. Cell Metab. 2023;35(6):943-60.e9.

    Article  PubMed  CAS  Google Scholar 

  127. Kang X, Liu C, Ding Y, Ni Y, Ji F, Lau HCH, et al. Roseburia intestinalis generated butyrate boosts anti-PD-1 efficacy in colorectal cancer by activating cytotoxic CD8+ T cells. Gut. 2023;72(11):2112–22.

    Article  PubMed  CAS  Google Scholar 

  128. Fong W, Li Q, Ji F, Liang W, Lau HCH, Kang X, et al. Lactobacillus gallinarum-derived metabolites boost anti-PD1 efficacy in colorectal cancer by inhibiting regulatory T cells through modulating IDO1/Kyn/AHR axis. Gut. 2023;72(12):2272–85.

    Article  PubMed  CAS  Google Scholar 

  129. Kawanabe-Matsuda H, Takeda K, Nakamura M, Makino S, Karasaki T, Kakimi K, et al. Dietary lactobacillus-derived exopolysaccharide enhances immune-checkpoint blockade therapy. Cancer Discov. 2022;12(5):1336–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Gao G, Shen S, Zhang T, Zhang J, Huang S, Sun Z, et al. Lacticaseibacillus rhamnosus Probio-M9 enhanced the antitumor response to anti-PD-1 therapy by modulating intestinal metabolites. EBioMedicine. 2023. https://doi.org/10.1016/j.ebiom.2023.104533.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–84.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kaisar MM, Pelgrom LR, Van der Ham AJ, Yazdanbakhsh M, Everts B. Butyrate conditions human dendritic cells to prime type 1 regulatory T cells via both histone deacetylase inhibition and G protein-coupled receptor 109A signaling. Front Immunol. 2017;8:1429.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Liu M, Xie W, Wan X, Deng T. Clostridium butyricum modulates gut microbiota and reduces colitis associated colon cancer in mice. Int Immunopharmacol. 2020;88:106862.

    Article  PubMed  CAS  Google Scholar 

  134. Chen D, Jin D, Huang S, Wu J, Xu M, Liu T, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett. 2020;469:456–67.

    Article  PubMed  CAS  Google Scholar 

  135. Peng Z, Cheng S, Kou Y, Wang Z, Jin R, Hu H, et al. The gut microbiome is associated with clinical response to anti–PD-1/PD-L1 immunotherapy in gastrointestinal cancer. Cancer Immunol Res. 2020;8(10):1251–61.

    Article  PubMed  Google Scholar 

  136. Chen J, Liang H, Lu J, He Y, Lai R. Probiotics improve postoperative adaptive immunity in colorectal cancer patients: a systematic review and meta-analysis. Nutr Cancer. 2022;74(8):2975–82.

    Article  PubMed  CAS  Google Scholar 

  137. McHale D, Francisco-Anderson L, Sandy P, Shariffudin S, Goldberg M, Gardner H, et al. P-325 Oral delivery of a single microbial strain, EDP1503, induces anti-tumor responses via gut-mediated activation of both innate and adaptive immunity. Ann Oncol. 2020;31:S195.

    Article  Google Scholar 

  138. Kiousi DE, Kouroutzidou AZ, Neanidis K, Karavanis E, Matthaios D, Pappa A, et al. The role of the gut Microbiome in cancer Immunotherapy: current knowledge and future directions. Cancers. 2023;15(7):2101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Xie J, Liu M, Deng X, Tang Y, Zheng S, Ou X, et al. Gut microbiota reshapes cancer immunotherapy efficacy: mechanisms and therapeutic strategies. Imeta. 2024;3(1):e156.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Khan U, Ho K, Hwang EK, Peña C, Brouwer J, Hoffman K, et al. Impact of use of antibiotics on response to immune checkpoint inhibitors and tumor microenvironment. Am J Clin Oncol. 2021;44(6):247–53.

    Article  PubMed  CAS  Google Scholar 

  141. Serpas Higbie V, Rogers J, Hwang H, Qiao W, Xiao L, Dasari A, et al. Antibiotic exposure does not impact immune checkpoint blockade response in MSI-H/dMMR metastatic colorectal cancer: a single-center experience. Oncologist. 2022;27(11):952–7.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Gao Y, Bi D, Xie R, Li M, Guo J, Liu H, et al. Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer. Signal Transduct Target Ther. 2021;6(1):398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Jiang S-S, Xie Y-L, Xiao X-Y, Kang Z-R, Lin X-L, Zhang L, et al. Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer. Cell Host Microbe. 2023;31(5):781-97.e9.

    Article  PubMed  CAS  Google Scholar 

  144. Botticelli A, Vernocchi P, Marini F, Quagliariello A, Cerbelli B, Reddel S, et al. Gut metabolomics profiling of non-small cell lung cancer (NSCLC) patients under immunotherapy treatment. J Transl Med. 2020;18:1–10.

    Article  Google Scholar 

  145. Nomura M, Nagatomo R, Doi K, Shimizu J, Baba K, Saito T, et al. Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors. JAMA Netw Open. 2020;3(4):e202895.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Kurilshikov A, Medina-Gomez C, Bacigalupe R, Radjabzadeh D, Wang J, Demirkan A, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet. 2021;53(2):156–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Marcella C, Cui B, Kelly CR, Ianiro G, Cammarota G, Zhang F. Systematic review: the global incidence of faecal microbiota transplantation-related adverse events from 2000 to 2020. Aliment Pharmacol Ther. 2021;53(1):33–42.

    Article  PubMed  Google Scholar 

Download references

Funding

NA.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to writing and final approval of the manuscript.

Corresponding author

Correspondence to Luis G. Bermúdez-Humarán.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheraghpour, M., Fatemi, N., Shadnoush, M. et al. Immunomodulation aspects of gut microbiome-related interventional strategies in colorectal cancer. Med Oncol 41, 231 (2024). https://doi.org/10.1007/s12032-024-02480-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02480-9

Keywords