Skip to main content

Advertisement

Log in

Exploring the potential of asparagine restriction in solid cancer treatment: recent discoveries, therapeutic implications, and challenges

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Asparagine is a non-essential amino acid crucial for protein biosynthesis and function, and therefore cell maintenance and growth. Furthermore, this amino acid has an important role in regulating several metabolic pathways, such as tricarboxylic acid cycle and the urea cycle. When compared to normal cells, tumor cells typically present a higher demand for asparagine, making it a compelling target for therapy. In this review article, we investigate different facets of asparagine bioavailability intricate role in malignant tumors raised from solid organs. We take a comprehensive look at asparagine synthetase expression and regulation in cancer, including the impact on tumor growth and metastasis. Moreover, we explore asparagine depletion through L-asparaginase as a potential therapeutic method for aggressive solid tumors, approaching different formulations of the enzyme and combinatory therapies. In summary, here we delve into studies about endogenous and exogenous asparagine availability in solid cancers, analyzing therapeutic implications and future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022. https://doi.org/10.1158/2159-8290.CD-21-1059.

    Article  PubMed  Google Scholar 

  2. Navarro C, Ortega Á, Santeliz R, Garrido B, Chacín M, Galban N, et al. Metabolic reprogramming in cancer cells: emerging molecular mechanisms and novel therapeutic approaches. Pharmaceutics. 2022. https://doi.org/10.3390/pharmaceutics14061303.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vettore L, Westbrook RL, Tennant DA. New aspects of amino acid metabolism in cancer. Br J Cancer. 2020. https://doi.org/10.1038/s41416-019-0620-5.

    Article  PubMed  Google Scholar 

  4. Knott SRV, Wagenblast E, Khan S, Kim SY, Soto M, Wagner M, et al. Asparagine bioavailability governs metastasis in a model of breast cancer. Nature. 2018;554:378–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pavlova NN, Hui S, Ghergurovich JM, Fan J, Intlekofer AM, White RM, et al. As extracellular glutamine levels decline, asparagine becomes an essential amino acid. Cell Metab. 2018;27:428-438.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lefin N, Miranda J, Beltrán JF, Belén LH, Effer B, Pessoa A, et al. Current state of molecular and metabolic strategies for the improvement of L-asparaginase expression in heterologous systems. Front Pharmacol. 2023.

  7. Sun J, Nagel R, Zaal EA, Ugalde AP, Han R, Proost N, et al. SLC 1A3 contributes to L-asparaginase resistance in solid tumors. EMBO J. 2019. https://doi.org/10.15252/embj.2019102147.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nakamura A, Nambu T, Ebara S, Hasegawa Y, Toyoshima K, Tsuchiya Y, et al. Inhibition of GCN2 sensitizes ASNS-low cancer cells to asparaginase by disrupting the amino acid response. Proc Natl Acad Sci USA. 2018. https://doi.org/10.1073/pnas.1805523115.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pathria G, Lee JS, Hasnis E, Tandoc K, Scott DA, Verma S, et al. Translational reprogramming marks adaptation to asparagine restriction in cancer. Nat Cell Biol. 2019;21:1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Recouvreux MV, Grenier SF, Zhang Y, Esparza E, Lambies G, Galapate CM, et al. Glutamine mimicry suppresses tumor progression through asparagine metabolism in pancreatic ductal adenocarcinoma. Nat Cancer. 2023. https://doi.org/10.1038/s43018-023-00649-1.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Karpel-Massler G, Ramani D, Shu C, Halatsch ME, Westhoff MA, Bruce JN, et al. Metabolic reprogramming of glioblastoma cells by L-asparaginase sensitizes for apoptosis in vitro and in vivo. Oncotarget. 2016;7:33512.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chandel NS. Amino acid metabolism. Cold Spring Harb Perspect Biol. 2021;13:a040584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kandasamy P, Zlobec I, Nydegger DT, Pujol-Giménez J, Bhardwaj R, Shirasawa S, et al. Oncogenic KRAS mutations enhance amino acid uptake by colorectal cancer cells via the hippo signaling effector YAP1. Mol Oncol. 2021;15:2782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Taurino G, Chiu M, Bianchi MG, Griffini E, Bussolati O. The SLC38A5 /SNAT5 amino acid transporter: from pathophysiology to pro-cancer roles in the tumor microenvironment. Am J Physiol Cell Physiol. 2023;325:C550.

    Article  CAS  PubMed  Google Scholar 

  15. Magi S, Piccirillo S, Amoroso S, Lariccia V. Excitatory amino acid transporters (Eaats): glutamate transport and beyond. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20225674.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Krall AS, Xu S, Graeber TG, Braas D, Christofk HR. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat Commun. 2016. https://doi.org/10.1038/ncomms11457.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Luo M, Brooks M, Wicha MS. Asparagine and glutamine: co-conspirators fueling metastasis. Cell Metab. 2018;27:947–9. https://doi.org/10.1016/j.cmet.2018.04.012.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J, Fan J, Venneti S, Cross JR, Takagi T, Bhinder B, et al. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol Cell. 2014;56:205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cui H, Darmanin S, Natsuisaka M, Kondo T, Asaka M, Shindoh M, et al. Enhanced expression of asparagine synthetase under glucose-deprived conditions protects pancreatic cancer cells from apoptosis induced by glucose deprivation and cisplatin. Cancer Res. 2007;67:3345.

    Article  CAS  PubMed  Google Scholar 

  20. Yang H, He X, Zheng Y, Feng W, Xia X, Yu X, et al. Down-regulation of asparagine synthetase induces cell cycle arrest and inhibits cell proliferation of breast cancer. Chem Biol Drug Des. 2014;84:578.

    Article  CAS  PubMed  Google Scholar 

  21. Xu Y, Lv F, Zhu X, Wu Y, Shen X. Loss of asparagine synthetase suppresses the growth of human lung cancer cells by arresting cell cycle at G0/G1 phase. Cancer Gene Ther. 2016;23:287.

    Article  CAS  PubMed  Google Scholar 

  22. Yu Q, Wang X, Wang L, Zheng J, Wang J, Wang B. Knockdown of asparagine synthetase (ASNS) suppresses cell proliferation and inhibits tumor growth in gastric cancer cells. Scand J Gastroenterol. 2016;51:1220.

    Article  CAS  PubMed  Google Scholar 

  23. Huang L, Guo Z, Wang F, Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct Target Ther. 2021. https://doi.org/10.1038/s41392-021-00780-4.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kerk SA, Papagiannakopoulos T, Shah YM, Lyssiotis CA. Metabolic networks in mutant KRAS-driven tumours: tissue specificities and the microenvironment. Nat Rev Cancer. 2021. https://doi.org/10.1038/s41568-021-00375-9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Suzuki T, Kishikawa T, Sato T, Takeda N, Sugiura Y, Seimiya T, et al. Mutant KRAS drives metabolic reprogramming and autophagic flux in premalignant pancreatic cells. Cancer Gene Ther. 2022;29:505.

    Article  CAS  PubMed  Google Scholar 

  26. Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H, et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science. 1979;2009:325.

    Google Scholar 

  27. Chidley C, Darnell AM, Gaudio BL, Lien EC, Barbeau AM, Vander Heiden MG, et al. A CRISPRi/a screening platform to study cellular nutrient transport in diverse microenvironments. Nat Cell Biol. 2024;26:825–38. https://doi.org/10.1038/s41556-024-01402-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Toda K, Kawada K, Iwamoto M, Inamoto S, Sasazuki T, Shirasawa S, et al. Metabolic alterations caused by KRAS mutations in colorectal cancer contribute to cell adaptation to glutamine depletion by upregulation of asparagine synthetase. Neoplasia. 2016;18:654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gwinn DM, Lee AG, Briones-Martin-del-Campo M, Conn CS, Simpson DR, Scott AI, et al. Oncogenic KRAS regulates amino acid homeostasis and asparagine biosynthesis via ATF4 and Alters Sensitivity to L-Asparaginase. Cancer Cell. 2018;33:91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang R, Li X, Wu Y, Zhang G, Liu X, Li Y, et al. EGFR activates GDH1 transcription to promote glutamine metabolism through MEK/ERK/ELK1 pathway in glioblastoma. Oncogene. 2020;39:2975.

    Article  CAS  PubMed  Google Scholar 

  31. Raho S, Capobianco L, Malivindi R, Vozza A, Piazzolla C, De Leonardis F, et al. KRAS-regulated glutamine metabolism requires UCP2-mediated aspartate transport to support pancreatic cancer growth. Nat Metab. 2020;2:1373.

    Article  CAS  PubMed  Google Scholar 

  32. Qin C, Yang X, Zhan Z. High expression of asparagine synthetase is associated with poor prognosis of breast cancer in chinese population. Cancer Biother Radiopharm. 2020. https://doi.org/10.1089/cbr.2019.3295.

    Article  PubMed  Google Scholar 

  33. Chiu M, Taurino G, Bianchi MG, Kilberg MS, Bussolati O. Asparagine synthetase in cancer: beyond acute lymphoblastic leukemia. Front Oncol. 2020. https://doi.org/10.3389/fonc.2019.01480.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jiang J, Srivastava S, Seim G, Pavlova NN, King B, Zou L, et al. Promoter demethylation of the asparagine synthetase gene is required for ATF4-dependent adaptation to asparagine depletion. J Biol Chem. 2019;294:18674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu WJ, Wang H, Peng XW, Da WW, Liu NW, Wang Y, et al. Asparagine synthetase expression is associated with the sensitivity to asparaginase in extranodal natural killer/T-cell lymphoma in vivo and in vitro. Onco Targets Ther. 2018;11:6605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dufour E, Gay F, Aguera K, Scoazec JY, Horand F, Lorenzi PL, et al. Pancreatic tumor sensitivity to plasma L-asparagine starvation. Pancreas. 2012;41:940.

    Article  CAS  PubMed  Google Scholar 

  37. Li H, Ning S, Ghandi M, Kryukov GV, Gopal S, Deik A, et al. The landscape of cancer cell line metabolism. Nat Med. 2019;25:850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li H, Zhou F, Du W, Dou J, Xu Y, Gao W, et al. Knockdown of asparagine synthetase by RNAi suppresses cell growth in human melanoma cells and epidermoid carcinoma cells. Biotechnol Appl Biochem. 2016;63:328.

    Article  CAS  PubMed  Google Scholar 

  39. Ueno T, Ohtawa K, Mitsui K, Kodera Y, Hiroto M, Matsushima A, et al. Cell cycle arrest and apoptosis of leukemia cells induced by L-asparaginase. Leukemia. 1997;11:1858.

    Article  CAS  PubMed  Google Scholar 

  40. Lubkowski J, Wlodawer A. Structural and biochemical properties of L-asparaginase. FEBS J. 2021;288:4183.

    Article  CAS  PubMed  Google Scholar 

  41. Kidd JG. Regression of transplanted lymphomas induced in vivo by means of normal guinea pig serum: I: course of transplanted cancers of various kinds in mice and rats given guinea pig serum, horse serum, or rabbit serum. J Exp Med. 1953;98:583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Broome JD. Evidence that the L-asparaginase of guinea pig serum is responsible for its antilymphoma effects: I: Properties of the L-asparaginase of guinea pig serum in relation to those of the antilymphoma substance. J Exp Med. 1963;118:121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yellin TO, Wriston JC. Purification and properties of guinea pig serum asparaginase. Biochemistry. 1966;5:1605.

    Article  CAS  PubMed  Google Scholar 

  44. Clarkson B, Krakoff I, Burchenal J, Karnofsky D, Golbey R, Dowling M, et al. Clinical results of treatment with E. coli L-asparaginase in adults with leukemia, lymphoma, and solid tumors. Cancer. 1970;25:279.

    Article  CAS  PubMed  Google Scholar 

  45. Strzelczyk P, Zhang D, Dyba M, Wlodawer A, Lubkowski J. Generalized enzymatic mechanism of catalysis by tetrameric l-asparaginases from mesophilic bacteria. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-74480-4.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chan WK, Lorenzi PL, Anishkin A, Purwaha P, Rogers DM, Sukharev S, et al. The glutaminase activity of L- Asparaginase is not required for anticancer activity against ASNS-negative cells. Blood. 2014;123:3596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chan WK, Horvath TD, Tan L, Link T, Harutyunyan KG, Pontikos MA, et al. Glutaminase activity of L-asparaginase contributes to durable preclinical activity against acute lymphoblastic leukemia. Mol Cancer Ther. 2019;18:1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kamal N, Koh C, Samala N, Fontana RJ, Stolz A, Durazo F, et al. Asparaginase-induced hepatotoxicity: rapid development of cholestasis and hepatic steatosis. Hepatol Int. 2019;13:641.

    Article  PubMed  Google Scholar 

  49. Buddington RK, Buddington KK, Howard SC. Multiple asparaginase infusions cause increasingly severe acute hyperammonemia. Med Sci. 2022;10:43.

    CAS  Google Scholar 

  50. Tong WH, Rizzari C. Back to the future: the amazing journey of the therapeutic anti-leukemia enzyme asparaginase Erwinia chrysanthemi. Haematologic. 2023;108:2606.

    Article  CAS  Google Scholar 

  51. Ashihara Y, Kono T, Yamazaki S, Inada Y. Modification of E. coli L-asparaginase with polyethylene glycol: disappearance of binding ability to anti-asparaginase serum. Biochem Biophys Res Commun. 1978;83:385.

    Article  CAS  PubMed  Google Scholar 

  52. Jiang J, Batra S, Zhang J. Asparagine: a metabolite to be targeted in cancers. Metabolites. 2021. https://doi.org/10.3390/metabo11060402.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Avramis VI, Sencer S, Periclou AP, Sather H, Bostrom BC, Cohen LJ, et al. A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children’s Cancer Group study. Blood. 2002;99:1986.

    Article  CAS  PubMed  Google Scholar 

  54. Ho DH, Brown NS, Yen A, Holmes R, Keating M, Abuchowski A, et al. Clinical pharmacology of polyethylene glycol-L-asparaginase. Drug Metabolism and Disposition. 1986;14.

  55. Pieters R, Hunger SP, Boos J, Rizzari C, Silverman L, Baruchel A, et al. L-asparaginase treatment in acute lymphoblastic leukemia: a focus on Erwinia asparaginase. Cancer. 2011;117:238.

    Article  CAS  PubMed  Google Scholar 

  56. Narta UK, Kanwar SS, Azmi W. Pharmacological and clinical evaluation of l-asparaginase in the treatment of leukemia. Crit Rev Oncol Hematol. 2007;61:208–21.

    Article  PubMed  Google Scholar 

  57. Nguyen HA, Su Y, Lavie A. Design and characterization of erwinia chrysanthemi L-asparaginase variants with diminished L-glutaminase activity. J Biol Chem. 2016;291:17664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nguyen HA, Su Y, Zhang JY, Antanasijevic A, Caffrey M, Schalk AM, et al. A novel L-asparaginase with low L-glutaminase coactivity is highly efficacious against both T- and B-cell acute lymphoblastic Leukemias In Vivo. Cancer Res. 2018;78:1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Van Trimpont M, Schalk AM, De Visser Y, Nguyen HA, Reunes L, Vandemeulebroecke K, et al. In vivo stabilization of a less toxic asparaginase variant leads to a durable antitumor response in acute leukemia. Haematologica. 2023;108:409.

    Article  PubMed  Google Scholar 

  60. Silverman LB, Declerck L, Gelber RD, Kimball Dalton V, Asselin BL, Barr RD, et al. Results of Dana-Farber Institute Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1981–1995). Leukemia. 2000;14:2247.

    Article  CAS  PubMed  Google Scholar 

  61. O’Connell TM, Golzarri-Arroyo L, Pin F, Barreto R, Dickinson SL, Couch ME, et al. Metabolic biomarkers for the early detection of cancer cachexia. Front Cell Dev Biol. 2021. https://doi.org/10.3389/fcell.2021.720096.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ni J, Zhang L. Cancer cachexia: definition, staging, and emerging treatments. Cancer Manag Res. 2020. https://doi.org/10.2147/CMAR.S261585.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Goodenough CG, Partin RE, Ness KK. Skeletal muscle and childhood cancer: where are we now and where we go from here. Aging Cancer. 2021;2.

  64. Hochwald S, Heslin M. Plasma Amino Acid Concentrations in Cancer Cachexia. 1996.

  65. Kunzke T, Buck A, Prade VM, Feuchtinger A, Prokopchuk O, Martignoni ME, et al. Derangements of amino acids in cachectic skeletal muscle are caused by mitochondrial dysfunction. J Cachexia Sarcopenia Muscle. 2020;11:226.

    Article  PubMed  Google Scholar 

  66. Bunpo P, Murray B, Cundiff J, Brizius E, Aldrich CJ, Anthony TG. Alanyl-glutamine consumption modifies the suppressive effect of L-asparaginase on lymphocyte populations in mice. J Nutr. 2008;138:338.

    Article  CAS  PubMed  Google Scholar 

  67. Ehsanipour EA, Sheng X, Behan JW, Wang X, Butturini A, Avramis VI, et al. Adipocytes cause leukemia cell resistance to l-asparaginase via release of glutamine. Cancer Res. 2013;73:2998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. van der Sluis IM, Vrooman LM, Pieters R, Baruchel A, Escherich G, Goulden N, et al. Consensus expert recommendations for identification and management of asparaginase hypersensitivity and silent inactivation. Haematologica. 2016;101:279.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhang B, Fan J, Zhang X, Shen W, Cao Z, Yang P, et al. Targeting asparagine and autophagy for pulmonary adenocarcinoma therapy. Appl Microbiol Biotechnol. 2016;100:9145.

    Article  CAS  PubMed  Google Scholar 

  70. Ji Y, Li L, Tao Q, Zhang X, Luan J, Zhao S, et al. Deprivation of asparagine triggers cytoprotective autophagy in laryngeal squamous cell carcinoma. Appl Microbiol Biotechnol. 2017;101:4951.

    Article  CAS  PubMed  Google Scholar 

  71. Chen Q, Ye L, Fan J, Zhang X, Wang H, Liao S, et al. Autophagy suppression potentiates the anti-glioblastoma effect of asparaginase in vitro and in vivo. Oncotarget. 2017;8:91052.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang Z, Xie Q, Zhou H, Zhang M, Shen J, Ju D. Amino acid degrading enzymes and autophagy in cancer therapy. Front Pharmacol. 2021. https://doi.org/10.3389/fphar.2020.582587.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Guo JY, White E. Autophagy, metabolism, and cancer. Cold Spring Harb Symp Quant Biol. 2016;81:73.

    Article  PubMed  Google Scholar 

  74. Monkkonen T, Debnath J. Inflammatory signaling cascades and autophagy in cancer. Autophagy. 2018. https://doi.org/10.1080/15548627.2017.1345412.

    Article  PubMed  Google Scholar 

  75. Kimmelman AC, White E. Autophagy and tumor metabolism. Cell Metab. 2017. https://doi.org/10.1016/j.cmet.2017.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ye J, Kumanova M, Hart LS, Sloane K, Zhang H, De Panis DN, et al. The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J. 2010;29:2082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Siu F, Bain PJ, Leblanc-Chaffin R, Chen H, Kilberg MS. ATF4 is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem. 2002;277:24120.

    Article  CAS  PubMed  Google Scholar 

  78. Lopez CD, Kardosh A, Chen EY, Pegna GJ, Goodyear S, Taber E, et al. Casper: a phase I, open-label, dose finding study of calaspargase pegol-mnkl (cala) in combination with cobimetinib (cobi) in locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). J Clin Oncol. 2023;41:TPS772.

    Article  Google Scholar 

  79. Encarnación-Rosado J, Sohn ASW, Biancur DE, Lin EY, Osorio-Vasquez V, Rodrick T, et al. Targeting pancreatic cancer metabolic dependencies through glutamine antagonism. Nat Cancer. 2023. https://doi.org/10.1038/s43018-023-00647-3.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Haskell CM. L-Asparaginase; therapeutic and toxic effects in patients with neoplastic disease. N Engl J Med. 1969;281:1028.

    Article  CAS  PubMed  Google Scholar 

  81. Hays JL, Kim G, Walker A, Annunziata CM, Lee J-M, Squires J, et al. A phase II clinical trial of polyethylene glycol-conjugated L-asparaginase in patients with advanced ovarian cancer: Early closure for safety. Mol Clin Oncol. 2013;1:565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Al-Dulimi AG, Al-Saffar AZ, Sulaiman GM, Khalil KAA, Khashan KS, Al-Shmgani HSA, et al. Immobilization of L-asparaginase on gold nanoparticles for novel drug delivery approach as anti-cancer agent against human breast carcinoma cells. J Mater Res Technol. 2020;9:15394.

    Article  CAS  Google Scholar 

  83. Tam S-Y, Chung S-F, Kim C-F, To JC, So P-K, Cheung K-K, et al. Development of a bioengineered Erwinia chrysanthemi asparaginase to enhance its anti-solid tumor potential for treating gastric cancer. Int J Biol Macromol. 2023;253:127742.

    Article  CAS  PubMed  Google Scholar 

  84. Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat Rev Cancer. 2021. https://doi.org/10.1038/s41568-021-00347-z.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yang L, Chu Z, Liu M, Zou Q, Li J, Liu Q, et al. Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J Hematol Oncol. 2023. https://doi.org/10.1186/s13045-023-01453-1.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chen J, Cui L, Lu S, Xu S. Amino acid metabolism in tumor biology and therapy. Cell Death Dis. 2024. https://doi.org/10.1038/s41419-024-06435-w.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wu J, Li G, Li L, Li D, Dong Z, Jiang P. Asparagine enhances LCK signalling to potentiate CD8+ T-cell activation and anti-tumour responses. Nat Cell Biol. 2021;23:75.

    Article  CAS  PubMed  Google Scholar 

  88. Hope HC, Brownlie RJ, Fife CM, Steele L, Lorger M, Salmond RJ. Coordination of asparagine uptake and asparagine synthetase expression modulates CD8+ T cell activation. JCI Insight. 2021. https://doi.org/10.1172/jci.insight.137761.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gnanaprakasam JNR, Kushwaha B, Liu L, Chen X, Kang S, Wang T, et al. Asparagine restriction enhances CD8+ T cell metabolic fitness and antitumoral functionality through an NRF2-dependent stress response. Nat Metab. 2023;5:123.

    Article  Google Scholar 

  90. Hersh EM. Immunosuppression by l-asparaginase and related enzymes: a review. Transplantation. 1971;12:368.

    Article  CAS  PubMed  Google Scholar 

  91. Kafkewitz D, Bendich A. Enzyme-induced asparagine and glutamine depletion and immune system function. Am J Clin Nutr. 1983. https://doi.org/10.1093/ajcn/37.6.1025.

    Article  PubMed  Google Scholar 

  92. Song P, Wang Z, Zhang X, Fan J, Li Y, Chen Q, et al. The role of autophagy in asparaginase-induced immune suppression of macrophages. Cell Death Dis. 2017;8:e2721.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Van Der Meer LT, Terry SYA, Van Ingen Schenau DS, Andree KC, Franssen GM, Roeleveld DM, et al. In vivo imaging of antileukemic drug asparaginase reveals a rapid macrophage-mediated clearance from the bone marrow. J Nuclear Med. 2017;58:214.

    Article  Google Scholar 

  94. Nishikawa H, Koyama S. Mechanisms of regulatory T cell infiltration in tumors: implications for innovative immune precision therapies. J Immunother Cancer. 2021. https://doi.org/10.1136/jitc-2021-002591.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Peña-Romero AC, Orenes-Piñero E. Dual effect of immune cells within tumour microenvironment: pro-and anti-tumour effects and their triggers. Cancers. 2022. https://doi.org/10.3390/cancers14071681.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Shi H, Chi H. Metabolic control of treg cell stability, plasticity, and tissue-specific heterogeneity. Front Immunol. 2019. https://doi.org/10.3389/fimmu.2019.02716.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bai J, Tang R, Zhou K, Chang J, Wang H, Zhang Q, et al. An asparagine metabolism-based classification reveals the metabolic and immune heterogeneity of hepatocellular carcinoma. BMC Med Genom. 2022. https://doi.org/10.1186/s12920-022-01380-z15.

    Article  Google Scholar 

  98. Yu M, Henning R, Walker A, Kim G, Perroy A, Alessandro R, et al. L-asparaginase inhibits invasive and angiogenic activity and induces autophagy in ovarian cancer. J Cell Mol Med. 2012;16:2369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Brumano LP, da Silva FVS, Costa-Silva TA, Apolinário AC, Santos JHPM, Kleingesinds EK, et al. Development of L-asparaginase biobetters: current research status and review of the desirable quality profiles. Front Bioeng Biotechnol. 2019;6:1–22.

    Article  Google Scholar 

  100. Springer AD, Dowdy SF. GalNAc-siRNA Conjugates: leading the Way for Delivery of RNAi Therapeutics. Nucleic Acid Ther. 2018. https://doi.org/10.1089/nat.2018.0736.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Nishikawa G, Kawada K, Hanada K, Maekawa H, Itatani Y, Miyoshi H, et al. Targeting asparagine synthetase in tumorgenicity using patient-derived tumor-initiating cells. Cells. 2022;11:3273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors would like to thank the São Paulo Research Foundation (FAPESP), grant numbers 2022/02456-0, 2023/07417-6, 2022/02076-3. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES), Finance Code 001. G.M. received a Productivity Fellowship from the Brazilian National Council of Technological and Scientific Development (CNPq 306060/2022-1).

Author information

Authors and Affiliations

Authors

Contributions

GM and MGF conceived the subject of the review. MGF, CS and WHR performed the writing and structure of the text. MGF and WHR designed the figures. CS constructed the table. All authors revised, edited and approved the final version of the manuscript, as well as its submission. GM provided financial support.

Corresponding author

Correspondence to Gisele Monteiro.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontes, M.G., Silva, C., Roldán, W.H. et al. Exploring the potential of asparagine restriction in solid cancer treatment: recent discoveries, therapeutic implications, and challenges. Med Oncol 41, 176 (2024). https://doi.org/10.1007/s12032-024-02424-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02424-3

Keywords