Skip to main content
Log in

Liver cancer wars: plant-derived polyphenols strike back

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Liver cancer currently represents the leading cause of cancer-related death worldwide. The majority of liver cancer arises in the context of chronic inflammation and cirrhosis. Surgery, radiation therapy, and chemotherapy have been the guideline-recommended treatment options for decades. Despite enormous advances in the field of liver cancer therapy, an effective cure is yet to be found. Plant-derived polyphenols constitute a large family of phytochemicals, with pleiotropic effects and little toxicity. They can drive cellular events and modify multiple signaling pathways which involves initiation, progression and metastasis of liver cancer and play an important role in contributing to anti-liver cancer drug development. The potential of plant-derived polyphenols for treating liver cancer has gained attention from research clinicians and pharmaceutical scientists worldwide in the last decades. This review overviews hepatic carcinogenesis and briefly discusses anti-liver cancer mechanisms associated with plant-derived polyphenols, specifically involving cell proliferation, apoptosis, autophagy, angiogenesis, oxidative stress, inflammation, and metastasis. We focus on plant-derived polyphenols with experiment-based chemopreventive and chemotherapeutic properties against liver cancer and generalize their basic molecular mechanisms of action. We also discuss potential opportunities and challenges in translating plant-derived polyphenols from preclinical success into clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

Abbreviations

AMPK:

Adenosine monophosphate-activated protein kinase

CTNNB1:

Catenin beta 1

DEN:

Diethylnitrosamine

EMT:

Epithelial-to-mesenchymal transition

MAPK:

Mitogen-activated protein kinase

mTOR:

Mammalian target of rapamycin

NF-κB:

Nuclear factor-κ B

PI3K:

Phosphatidylinositol 3-kinase

ROS:

Reactive oxygen species

TP53:

Tumor protein 53

VEGF:

Vascular endothelial growth factor

References

  1. Di Benedetto F, Magistri P, Di Sandro S, Sposito C, Oberkofler C, Brandon E, et al. Safety and efficacy of robotic vs open liver resection for hepatocellular carcinoma. JAMA Surg. 2023;158(1):46–54.

    Article  PubMed  Google Scholar 

  2. Chavda V, Zajac KK, Gunn JL, Balar P, Khadela A, Vaghela D, et al. Ethnic differences in hepatocellular carcinoma prevalence and therapeutic outcomes. Cancer Rep (Hoboken). 2023;6(Suppl 1):e1821.

    Article  PubMed  Google Scholar 

  3. Wang Y, Feng Z, Zhang Y, Zhang Y. Establishment and verification of a prognostic risk score model based on immune genes for hepatocellular carcinoma in an Asian population. Transl Cancer Res. 2023;12(10):2806–22.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Imamura T, Okamura Y, Ohshima K, Uesaka K, Sugiura T, Yamamoto Y, et al. Molecular characterization-based multi-omics analyses in primary liver cancer using the Japanese version of the genome atlas. J Hepatobiliary Pancreat Sci. 2023;30(3):269–82.

    Article  PubMed  Google Scholar 

  5. Kim T, Issa D, Onyshchenko M. Analyzing TCGA data to identify gene mutations linked to hepatocellular carcinoma in Asians. Gastrointest Tumors. 2022;9(2–4):43–58.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Abenavoli L, Montori M, Svegliati Baroni G, Argenziano ME, Giorgi F, Scarlata GGM, et al. Perspective on the role of gut microbiome in the treatment of hepatocellular carcinoma with immune checkpoint inhibitors. Medicina (Kaunas). 2023;59(8):1427.

    Article  PubMed  Google Scholar 

  7. Lyubitelev A, Studitsky V. Inhibition of cancer development by natural plant polyphenols: molecular mechanisms. Int J Mol Sci. 2023;24(13):10663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahmed S, Khan H, Aschner M, Mirzae H, Küpeli Akkol E, Capasso R. Anticancer potential of furanocoumarins: mechanistic and therapeutic aspects. Int J Mol Sci. 2020;21(16):5622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rah B, Farhat NM, Hamad M, Muhammad JS. JAK/STAT signaling and cellular iron metabolism in hepatocellular carcinoma: therapeutic implications. Clin Exp Med. 2023;23(7):3147–57.

    Article  CAS  PubMed  Google Scholar 

  10. Stagos D, Amoutzias GD, Matakos A, Spyrou A, Tsatsakis AM, Kouretas D. Chemoprevention of liver cancer by plant polyphenols. Food Chem Toxicol. 2012;50(6):2155–70.

    Article  CAS  PubMed  Google Scholar 

  11. Li S, Yin S, Ding H, Shao Y, Zhou S, Pu W, et al. Polyphenols as potential metabolism mechanisms regulators in liver protection and liver cancer prevention. Cell Prolif. 2023;56(1):e13346.

    Article  CAS  PubMed  Google Scholar 

  12. Yang C, Zhang S, Cheng Z, Liu Z, Zhang L, Jiang K, et al. Multi-region sequencing with spatial information enables accurate heterogeneity estimation and risk stratification in liver cancer. Genome Med. 2022;14(1):142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature. 2022;612(7938):141–7.

    Article  CAS  PubMed  Google Scholar 

  14. Yu X, Lei X. Application of the multi-omics liquid biopsy method M2P-HCC in early liver cancer screening for high-risk individuals with hepatitis B-related liver cancer. Diagnostics (Basel). 2023;13(15):2484.

    Article  CAS  PubMed  Google Scholar 

  15. Wang SH, Yeh SH, Chen PJ. Androgen enhances aflatoxin-induced genotoxicity and inflammation to liver cancer in male hepatitis B patients. Cell Mol Gastroenterol Hepatol. 2023;15(2):507–8.

    Article  CAS  PubMed  Google Scholar 

  16. Xia P, Liu DH, Wang D, Wen GM, Zhao ZY. SLC3A2, as an indirect target gene of ALDH2, exacerbates alcohol-associated liver cancer via the sphingolipid biosynthesis pathway. Free Radic Biol Med. 2023;206:125–33.

    Article  CAS  PubMed  Google Scholar 

  17. Rodríguez-Lara A, Rueda-Robles A, Sáez-Lara MJ, Plaza-Diaz J, Álvarez-Mercado AI. From non-alcoholic fatty liver disease to liver cancer: microbiota and inflammation as key players. Pathogens. 2023;12(7):940.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Adugna A. Histomolecular characterisation of hepatitis B virus induced liver cancer. Rev Med Virol. 2023;33(6):e2485.

    Article  CAS  PubMed  Google Scholar 

  19. Dai W, Shen J, Yan J, Bott AJ, Maimouni S, Daguplo HQ, et al. Glutamine synthetase limits β-catenin-mutated liver cancer growth by maintaining nitrogen homeostasis and suppressing mTORC1. J Clin Invest. 2022;132(24):e161408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Akuta N, Kawamura Y, Fujiyama S, Sezaki H, Hosaka T, Saitoh S, et al. Favorable impact of serum TERT C228T for prognosis after surgical resection for liver cancer. Oncology. 2023;101(11):738–52.

    Article  CAS  PubMed  Google Scholar 

  21. Vu T, Fowler A, McCarty N. Comprehensive analysis of the prognostic significance of the TRIM family in the context of TP53 mutations in cancers. Cancers (Basel). 2023;15(15):3792.

    Article  CAS  PubMed  Google Scholar 

  22. Mou H, Eskiocak O, Özler KA, Gorman M, Yue J, Jin Y, et al. CRISPR-induced exon skipping of β-catenin reveals tumorigenic mutants driving distinct subtypes of liver cancer. J Pathol. 2023;259(4):415–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schaeffer S, Gupta B, Calatayud AL, Calderaro J, Caruso S, Hirsch TZ, et al. RSK2 inactivation cooperates with AXIN1 inactivation or β-catenin activation to promote hepatocarcinogenesis. J Hepatol. 2023;79(3):704–16.

    Article  CAS  PubMed  Google Scholar 

  24. Lin D, Luo R, Ye Z, Wei Q, Bae H, Juon HS, et al. Genomic characterization of early-stage hepatocellular carcinoma patients with hepatitis B using circulating tumor DNA. Clin Res Hepatol Gastroenterol. 2023;47(7):102161.

    Article  CAS  PubMed  Google Scholar 

  25. Tümen D, Heumann P, Gülow K, Demirci CN, Cosma LS, Müller M, et al. Pathogenesis and current treatment strategies of hepatocellular carcinoma. Biomedicines. 2022;10(12):3202.

    Article  PubMed  PubMed Central  Google Scholar 

  26. He J, Han J, Lin K, Wang J, Li G, Li X, et al. PTEN/AKT and Wnt/β-catenin signaling pathways regulate the proliferation of Lgr5+ cells in liver cancer. Biochem Biophys Res Commun. 2023;683:149117.

    Article  CAS  PubMed  Google Scholar 

  27. Lin W, Wang K, Mo J, Wang L, Song Z, Jiang H, et al. PIK3R3 is upregulated in liver cancer and activates Akt signaling to control cancer growth by regulation of CDKN1C and SMC1A. Cancer Med. 2023;12(13):14413–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. You M, Fu J, Lv X, Wang L, Wang H, Li R. Saikosaponin b2 inhibits tumor angiogenesis in liver cancer via down-regulation of VEGF/ERK/HIF-1α signaling. Oncol Rep. 2023;50(1):136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ye JC, Hsieh YS, Chen PN, Liu JY, Hsieh YH. Involvement of matrix metalloproteinase 1 and urokinase-type plasminogen activator in the PKCα-p38 MAPK pathway-mediated progression of human liver cancer cells. Drug Dev Res. 2023;84(4):767–76.

    Article  CAS  PubMed  Google Scholar 

  30. Yamada K, Hannya Y, Oikawa T, Yoshida A, Katagiri K, Yoshida S, et al. Extended-synaptotagmin 1 enhances liver cancer progression mediated by the unconventional secretion of cytosolic proteins. Molecules. 2023;28(10):4033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kalantari L, Ghotbabadi ZR, Gholipour A, Ehymayed HM, Najafiyan B, Amirlou P, et al. A state-of-the-art review on the NRF2 in Hepatitis virus-associated liver cancer. Cell Commun Signal. 2023;21(1):318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buttell A, Qiu W. The action and resistance mechanisms of Lenvatinib in liver cancer. Mol Carcinog. 2023;62(12):1918–34.

    Article  CAS  PubMed  Google Scholar 

  33. Abusaliya A, Jeong SH, Bhosale PB, Kim HH, Park MY, Kim E, et al. Mechanistic action of cell cycle arrest and intrinsic apoptosis via inhibiting Akt/mTOR and activation of p38-MAPK signaling pathways in hep3b liver cancer cells by prunetrin-A flavonoid with therapeutic potentiaL. Nutrients. 2023;15(15):3407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li Y, Zhu J, Yu Z, Zhai F, Li H, Jin X. Regulation of apoptosis by ubiquitination in liver cancer. Am J Cancer Res. 2023;13(10):4832–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Elmetwalli A, Diab T, Albalawi AN, El-Naggar SA, El-Far AH, Ghedan AR, et al. Diarylheptanoids/sorafenib as a potential anticancer combination against hepatocellular carcinoma: the p53/MMP9 axis of action. Naunyn Schmiedebergs Arch Pharmacol. 2023;396(10):2501–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of hepatocellular carcinoma: the interplay of apoptosis and autophagy. Biomedicines. 2023;11(4):1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gerardo-Ramírez M, Giam V, Becker D, Groth M, Hartmann N, Morrison H, et al. Deletion of Cd44 inhibits metastasis formation of liver cancer in Nf2-mutant mice. Cells. 2023;12(9):1257.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yu L, Li T, Zhang H, Ma Z, Wu S. Silymarin suppresses proliferation of human hepatocellular carcinoma cells under hypoxia through downregulation of the HIF-1α/VEGF pathway. Am J Transl Res. 2023;15(7):4521–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Srivastava A, Sharma H, Chowdhury S, Chowdhury R, Mukherjee S. Transforming growth factor- β mediated regulation of epigenome is required for epithelial to mesenchymal transition associated features in liver cancer cells. Heliyon. 2023;9(4):e14665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Khattulanuar FS, Sekar M, Fuloria S, Gan SH, Rani NNIM, Ravi S, et al. Tilianin: a potential natural lead molecule for new drug design and development for the treatment of cardiovascular disorders. Molecules. 2022;27(3):673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Zhao M, Zhao L, Geng Y, Li G, Chen L, et al. HBx-Induced HSPA8 stimulates HBV replication and suppresses ferroptosis to support liver cancer progression. Cancer Res. 2023;83(7):1048–61.

    Article  CAS  PubMed  Google Scholar 

  42. Alba MM, Ebright B, Hua B, Slarve I, Zhou Y, Jia Y, et al. Eicosanoids and other oxylipins in liver injury, inflammation and liver cancer development. Front Physiol. 2023;14:1098467.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li N, Shou Z, Yang S, Cheng X, Chen C, Zheng S, et al. Subtle distinction in molecular structure of flavonoids leads to vastly different coating efficiency and mechanism of metal-polyphenol networks with excellent antioxidant activities. Colloids Surf B Biointerfaces. 2023;229:113454.

    Article  CAS  PubMed  Google Scholar 

  44. Zagoskina NV, Zubova MY, Nechaeva TL, Kazantseva VV, Goncharuk EA, Katanskaya VM, et al. Polyphenols in plants: structure, biosynthesis, abiotic stress regulation, and practical applications (review). Int J Mol Sci. 2023;24(18):13874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gade A, Kumar MS. Gut microbial metabolites of dietary polyphenols and their potential role in human health and diseases. J Physiol Biochem. 2023;79(4):695–718.

    Article  CAS  PubMed  Google Scholar 

  46. Lippolis T, Cofano M, Caponio GR, De Nunzio V, Notarnicola M. Bioaccessibility and bioavailability of diet polyphenols and their modulation of gut microbiota. Int J Mol Sci. 2023;24(4):3813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gao H, Wang H, Peng J. Hispidulin induces apoptosis through mitochondrial dysfunction and inhibition of P13k/Akt signalling pathway in HepG2 cancer cells. Cell Biochem Biophys. 2014;69(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  48. Hwang YJ, Lee EJ, Kim HR, Hwang KA. Molecular mechanisms of luteolin-7-O-glucoside-induced growth inhibition on human liver cancer cells: G2/M cell cycle arrest and caspase-independent apoptotic signaling pathways. BMB Rep. 2013;46(12):611–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Khan MS, Halagowder D, Devaraj SN. Methylated chrysin induces co-ordinated attenuation of the canonical Wnt and NF-kB signaling pathway and upregulates apoptotic gene expression in the early hepatocarcinogenesis rat model. Chem Biol Interact. 2011;193(1):12–21.

    Article  CAS  PubMed  Google Scholar 

  50. Wu R, Murali R, Kabe Y, French SW, Chiang YM, Liu S, et al. Baicalein targets GTPase-mediated autophagy to eliminate liver tumor-initiating stem cell-like cells resistant to mTORC1 inhibition. Hepatology. 2018;68(5):1726–40.

    Article  CAS  PubMed  Google Scholar 

  51. Zheng J, Shao Y, Jiang Y, Chen F, Liu S, Yu N, et al. Tangeretin inhibits hepatocellular carcinoma proliferation and migration by promoting autophagy-related BECLIN1. Cancer Manag Res. 2019;11:5231–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tahir M, Rehman MU, Lateef A, Khan AQ, Khan R, Qamar W, et al. Diosmin abrogates chemically induced hepatocarcinogenesis via alleviation of oxidative stress, hyperproliferative and inflammatory markers in murine model. Toxicol Lett. 2013;220(3):205–18.

    Article  CAS  PubMed  Google Scholar 

  53. Shi MD, Liao YC, Shih YW, Tsai LY. Nobiletin attenuates metastasis via both ERK and PI3K/Akt pathways in HGF-treated liver cancer HepG2 cells. Phytomedicine. 2013;20(8–9):743–52.

    Article  CAS  PubMed  Google Scholar 

  54. Li X, Li Y, Wang Y, Liu F, Liu Y, Liang J, et al. Sinensetin suppresses angiogenesis in liver cancer by targeting the VEGF/VEGFR2/AKT signaling pathway. Exp Ther Med. 2022;23(5):360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li G, Chi CW, Shao XF, Fang CH. Application of molecular imaging technology in evaluating the inhibiting effect of apigenin in vivo on subcutaneous hepatocellular carcinoma. Biochem Biophys Res Commun. 2017;487(1):122–7.

    Article  CAS  PubMed  Google Scholar 

  56. Guan H, Zhang W, Liu H, Jiang Y, Li F, Wu M, et al. Quercetin induces apoptosis in HepG2 cells via directly interacting with YY1 to disrupt YY1-p53 interaction. Metabolites. 2023;13(2):229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chandrababu G, Varkey M, Devan AR, Anjaly MV, Unni AR, Nath LR. Kaempferide exhibits an anticancer effect against hepatocellular carcinoma in vitro and in vivo. Naunyn Schmiedebergs Arch Pharmacol. 2023;396(10):2461–7.

    Article  CAS  PubMed  Google Scholar 

  58. Perumal N, Perumal M, Kannan A, Subramani K, Halagowder D, Sivasithamparam N. Morin impedes Yap nuclear translocation and fosters apoptosis through suppression of Wnt/β-catenin and NF-κB signaling in Mst1 overexpressed HepG2 cells. Exp Cell Res. 2017;355(2):124–41.

    Article  CAS  PubMed  Google Scholar 

  59. Chien ST, Shi MD, Lee YC, Te CC, Shih YW. Galangin, a novel dietary flavonoid, attenuates metastatic feature via PKC/ERK signaling pathway in TPA-treated liver cancer HepG2 cells. Cancer Cell Int. 2015;15:15.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sarkar S, Das AK, Bhattacharya S, Gachhui R, Sil PC. Isorhamnetin exerts anti-tumor activity in DEN + CCl4-induced HCC mice. Med Oncol. 2023;40(7):188.

    Article  CAS  PubMed  Google Scholar 

  61. Nair B, Anto RJ, M S, Nath LR. Kaempferol-mediated sensitization enhances chemotherapeutic efficacy of sorafenib against hepatocellular carcinoma: an in silico and in vitro approach. Adv Pharm Bull. 2020;10(3):472–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tu YY, Tang AB, Watanabe N. The theaflavin monomers inhibit the cancer cells growth in vitro. Acta Biochim Biophys Sin (Shanghai). 2004;36(7):508–12.

    Article  CAS  PubMed  Google Scholar 

  63. Tang Y, Cao J, Cai Z, An H, Li Y, Peng Y, et al. Epigallocatechin gallate induces chemopreventive effects on rats with diethylnitrosamine-induced liver cancer via inhibition of cell division cycle 25A. Mol Med Rep. 2020;22(5):3873–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Arul D, Subramanian P. Naringenin (citrus flavonone) induces growth inhibition, cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. Pathol Oncol Res. 2013;19(4):763–70.

    Article  CAS  PubMed  Google Scholar 

  65. Mo’men YS, Hussein RM, Kandeil MA. Involvement of PI3K/Akt pathway in the protective effect of hesperidin against a chemically induced liver cancer in rats. J Biochem Mol Toxicol. 2019;33(6):e22305.

    Article  PubMed  Google Scholar 

  66. Krishnan G, Subramaniyan J, Chengalvarayan Subramani P, Muralidharan B, Thiruvengadam D. Hesperetin conjugated PEGylated gold nanoparticles exploring the potential role in anti-inflammation and anti-proliferation during diethylnitrosamine-induced hepatocarcinogenesis in rats. Asian J Pharm Sci. 2017;12(5):442–55.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lee J, Sim W, Han SI, Byeon JH, Jin SB, Binti Morshidi NAA, et al. Eriodictyol attenuates cholangiocarcinoma malignancy by regulating HMOX1 expression: an in vitro study. Anticancer Res. 2022;42(8):3789–98.

    Article  CAS  PubMed  Google Scholar 

  68. Zhu J, Huang Y, Zhang J, Feng Y, Shen L. Formulation, preparation and evaluation of nanostructured lipid carrier containing naringin and coix seed oil for anti-tumor application based on “unification of medicines and excipients.” Drug Des Devel Ther. 2020;14:1481–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee SR, Kwon SW, Lee YH, Kaya P, Kim JM, Ahn C, et al. Dietary intake of genistein suppresses hepatocellular carcinoma through AMPK-mediated apoptosis and anti-inflammation. BMC Cancer. 2019;19(1):6.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Park HJ, Jeon YK, You DH, Nam MJ. Daidzein causes cytochrome c-mediated apoptosis via the Bcl-2 family in human hepatic cancer cells. Food Chem Toxicol. 2013;60:542–9.

    Article  CAS  PubMed  Google Scholar 

  71. Jiang CP, Ding H, Shi DH, Wang YR, Li EG, Wu JH. Pro-apoptotic effects of tectorigenin on human hepatocellular carcinoma HepG2 cells. World J Gastroenterol. 2012;18(15):1753–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang JR, Luo YH, Piao XJ, Zhang Y, Feng YC, Li JQ, et al. Mechanisms underlying isoliquiritigenin-induced apoptosis and cell cycle arrest via ROS-mediated MAPK/STAT3/NF-κB pathways in human hepatocellular carcinoma cells. Drug Dev Res. 2019;80(4):461–70.

    Article  CAS  PubMed  Google Scholar 

  73. Youssef MM, Tolba MF, Badawy NN, Liu AW, El-Ahwany E, Khalifa AE, et al. Novel combination of sorafenib and biochanin-A synergistically enhances the anti-proliferative and pro-apoptotic effects on hepatocellular carcinoma cells. Sci Rep. 2016;6:30717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zeng YP, Yang ZR, Guo XF, Jun W, Dong WG. Synergistic effect of puerarin and 5-fluorouracil on hepatocellular carcinoma. Oncol Lett. 2014;8(6):2436–42.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gautam AK, Kumar P, Maity B, Routholla G, Ghosh B, Chidambaram K, et al. Synthesis and appraisal of dalbergin-loaded PLGA nanoparticles modified with galactose against hepatocellular carcinoma: In-vitro, pharmacokinetic, and in-silico studies. Front Pharmacol. 2022;13:1021867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang X, Wang T, Zhou H, Li Y, Guo H, Su H. Differential inhibite effect of xanthohumol on HepG2 cells and primary hepatocytes. Dose Response. 2022;20(4):15593258221136052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ma CY, Ji WT, Chueh FS, Yang JS, Chen PY, Yu CC, et al. Butein inhibits the migration and invasion of SK-HEP-1 human hepatocarcinoma cells through suppressing the ERK, JNK, p38, and uPA signaling multiple pathways. J Agric Food Chem. 2011;59(16):9032–8.

    Article  CAS  PubMed  Google Scholar 

  78. Nair SV, Ziaullah Rupasinghe HP. Fatty acid esters of phloridzin induce apoptosis of human liver cancer cells through altered gene expression. PLoS One. 2014;9(9):e107149.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wu CH, Ho YS, Tsai CY, Wang YJ, Tseng H, Wei PL, et al. In vitro and in vivo study of phloretin-induced apoptosis in human liver cancer cells involving inhibition of type II glucose transporter. Int J Cancer. 2009;124(9):2210–9.

    Article  CAS  PubMed  Google Scholar 

  80. Sun Y, Tan YJ, Lu ZZ, Li BB, Sun CH, Li T, et al. Arctigenin inhibits liver cancer tumorigenesis by inhibiting gankyrin expression via C/EBPα and PPARα. Front Pharmacol. 2018;9:268.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Deng P, Wang C, Chen L, Wang C, Du Y, Yan X, et al. Sesamin induces cell cycle arrest and apoptosis through the inhibition of signal transducer and activator of transcription 3 signalling in human hepatocellular carcinoma cell line HepG2. Biol Pharm Bull. 2013;36(10):1540–8.

    Article  CAS  PubMed  Google Scholar 

  82. Ma ZJ, Lu L, Yang JJ, Wang XX, Su G, Wang ZL, et al. Lariciresinol induces apoptosis in HepG2 cells via mitochondrial-mediated apoptosis pathway. Eur J Pharmacol. 2018;821:1–10.

    Article  CAS  PubMed  Google Scholar 

  83. Feng F, Pan L, Wu J, Liu M, He L, Yang L, et al. Schisantherin A inhibits cell proliferation by regulating glucose metabolism pathway in hepatocellular carcinoma. Front Pharmacol. 2022;13:1019486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Qian YY, Liu ZS, Pan DY, Li K. Tumoricidal activities of pterostilbene depend upon destabilizing the MTA1-NuRD complex and enhancing P53 acetylation in hepatocellular carcinoma. Exp Ther Med. 2017;14(4):3098–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Park S, Lim J, Kim JR, Cho S. Inhibitory effects of resveratrol on hepatitis B virus X protein-induced hepatocellular carcinoma. J Vet Sci. 2017;18(4):419–29.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chang TW, Lin CY, Tzeng YJ, Lur HS. Synergistic combinations of tanshinone IIA and trans-resveratrol toward cisplatin-comparable cytotoxicity in HepG2 human hepatocellular carcinoma cells. Anticancer Res. 2014;34(10):5473–80.

    CAS  PubMed  Google Scholar 

  87. Srigopalram S, Jayraaj IA, Kaleeswaran B, Balamurugan K, Ranjithkumar M, Kumar TS, et al. Ellagic acid normalizes mitochondrial outer membrane permeabilization and attenuates inflammation-mediated cell proliferation in experimental liver cancer. Appl Biochem Biotechnol. 2014;173(8):2254–66.

    Article  CAS  PubMed  Google Scholar 

  88. Hussein AM, El-Beih NM, Swellam M, El-Hussieny EA. Pomegranate juice and punicalagin-mediated chemoprevention of hepatocellular carcinogenesis via regulating miR-21 and NF-κB-p65 in a rat model. Cancer Cell Int. 2022;22(1):333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dorniani D, Saifullah B, Barahuie F, Arulselvan P, Hussein MZ, Fakurazi S, et al. Graphene oxide-gallic acid nanodelivery system for cancer therapy. Nanoscale Res Lett. 2016;11(1):491.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Buskaran K, Bullo S, Hussein MZ, Masarudin MJ, Mohd Moklas MA, Fakurazi S. Anticancer Molecular mechanism of protocatechuic acid loaded on folate coated functionalized graphene oxide nanocomposite delivery system in human hepatocellular carcinoma. Materials (Basel). 2021;14(4):817.

    Article  CAS  PubMed  Google Scholar 

  91. Liu H, Zang L, Zhao J, Wang Z, Li L. Paeoniflorin inhibits cell viability and invasion of liver cancer cells via inhibition of Skp2. Oncol Lett. 2020;19(4):3165–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Beltrán-Ramírez O, Pérez RM, Sierra-Santoyo A, Villa-Treviño S. Cancer prevention mediated by caffeic acid phenethyl ester involves cyp2b1/2 modulation in hepatocarcinogenesis. Toxicol Pathol. 2012;40(3):466–72.

    Article  PubMed  Google Scholar 

  93. Wang J, Lai X, Yuan D, Liu Y, Wang J, Liang Y. Effects of ferulic acid, a major component of rice bran, on proliferation, apoptosis, and autophagy of HepG2 cells. Food Res Int. 2022;161:111816.

    Article  CAS  PubMed  Google Scholar 

  94. Jin B, Liu J, Gao D, Xu Y, He L, Zang Y, et al. Detailed studies on the anticancer action of rosmarinic acid in human Hep-G2 liver carcinoma cells: evaluating its effects on cellular apoptosis, caspase activation and suppression of cell migration and invasion. J BUON. 2020;25(3):1383–9.

    PubMed  Google Scholar 

  95. Zhao J, Li H, Li W, Wang Z, Dong Z, Lan H, et al. Effects of sinapic acid combined with cisplatin on the apoptosis and autophagy of the hepatoma cells HepG2 and SMMC-7721. Evid Based Complement Alternat Med. 2021;2021:6095963.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Antonini E, Iori R, Ninfali P, Scarpa ES. A Combination of moringin and avenanthramide 2f inhibits the proliferation of Hep3B liver cancer cells inducing intrinsic and extrinsic apoptosis. Nutr Cancer. 2018;70(7):1159–65.

    Article  CAS  PubMed  Google Scholar 

  97. Yan CM, Chai EQ, Cai HY, Miao GY, Ma W. Oleuropein induces apoptosis via activation of caspases and suppression of phosphatidylinositol 3-kinase/protein kinase B pathway in HepG2 human hepatoma cell line. Mol Med Rep. 2015;11(6):4617–24.

    Article  CAS  PubMed  Google Scholar 

  98. Cheng HH, Liao WC, Lin RA, Chen IS, Wang JL, Chien JM, et al. Hydroxytyrosol [2-(3,4-dihydroxyphenyl)-ethanol], a natural phenolic compound found in the olive, alters Ca2+ signaling and viability in human HepG2 hepatoma cells. Chin J Physiol. 2022;65(1):30–6.

    Article  CAS  PubMed  Google Scholar 

  99. Jayakumar S, Madankumar A, Asokkumar S, Raghunandhakumar S, Gokula dhas K, Kamaraj S, et al. Potential preventive effect of carvacrol against diethylnitrosamine-induced hepatocellular carcinoma in rats. Mol Cell Biochem. 2012;360(1–2):51–60.

    Article  CAS  PubMed  Google Scholar 

  100. Altintas F, Tunc-Ata M, Secme M, Kucukatay V. The anticancer effects of thymol on HepG2 cell line. Med Oncol. 2023;40(9):260.

    Article  CAS  PubMed  Google Scholar 

  101. Tang B, Tang F, Wang Z, Qi G, Liang X, Li B, et al. Upregulation of Akt/NF-κB-regulated inflammation and Akt/Bad-related apoptosis signaling pathway involved in hepatic carcinoma process: suppression by carnosic acid nanoparticle. Int J Nanomedicine. 2016;11:6401–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kong S, Xiao W, Ma T, Chen Y, Shi H, Tu J, et al. Carnosol inhibits the proliferation, migration, and invasion of hepatocellular carcinoma cells in vitro by regulating the AMPK signaling pathway. Anticancer Agents Med Chem. 2023. https://doi.org/10.2174/1871520623666230418093254.

    Article  PubMed  Google Scholar 

  103. Li L, Zou T, Liang M, Mezhuev Y, Tsatsakis AM, Đorđević AB, et al. Screening of metabolites in the treatment of liver cancer xenografts HepG2/ADR by psoralen-loaded lipid nanoparticles. Eur J Pharm Biopharm. 2021;165:337–44.

    Article  CAS  PubMed  Google Scholar 

  104. Pattanayak SP, Bose P, Sunita P, Siddique MUM, Lapenna A. Bergapten inhibits liver carcinogenesis by modulating LXR/PI3K/Akt and IDOL/LDLR pathways. Biomed Pharmacother. 2018;108:297–308.

    Article  CAS  PubMed  Google Scholar 

  105. Issa MY, Elshal MF, Fathallah N, Abdelkawy MA, Bishr M, Salama O, et al. Potential anticancer activity of the furanocoumarin derivative xanthotoxin isolated from Ammi majus L fruits in vitro and in silico studies. Molecules. 2022;27(3):943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Harakeh S, Al-Raddadi R, Alamri T, Al-Jaouni S, Qari M, Qari Y, et al. Apoptosis induction in human hepatoma cell line HepG2 cells by trans- Anethole via activation of mitochondria-mediated apoptotic pathways. Biomed Pharmacother. 2023;165:115236.

    Article  CAS  PubMed  Google Scholar 

  107. Majeed H, Antoniou J, Fang Z. Apoptotic effects of eugenol-loaded nanoemulsions in human colon and liver cancer cell lines. Asian Pac J Cancer Prev. 2014;15(21):9159–64.

    Article  PubMed  Google Scholar 

  108. Al-Abbasi FA, Alghamdi EA, Baghdadi MA, Alamoudi AJ, El-Halawany AM, El-Bassossy HM, et al. Gingerol synergizes the cytotoxic effects of doxorubicin against liver cancer cells and protects from its vascular toxicity. Molecules. 2016;21(7):886.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Tian S, Liao L, Zhou Q, Huang X, Zheng P, Guo Y, et al. Curcumin inhibits the growth of liver cancer by impairing myeloid-derived suppressor cells in murine tumor tissues. Oncol Lett. 2021;21(4):286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Huang TY, Peng SF, Huang YP, Tsai CH, Tsai FJ, Huang CY, et al. Combinational treatment of all-trans retinoic acid (ATRA) and bisdemethoxycurcumin (BDMC)-induced apoptosis in liver cancer Hep3B cells. J Food Biochem. 2020;44(2):e13122.

    Article  PubMed  Google Scholar 

  111. Xiu Z, Li Y, Fang J, Han J, Li S, Li Y, et al. Inhibitory effects of esculetin on liver cancer through triggering NCOA4 pathway-mediation ferritinophagy in vivo and in vitro. J Hepatocell Carcinoma. 2023;10:611–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang Y, Qiu Z, Zhou B, Liu C, Ruan J, Yan Q, et al. In vitro antiproliferative and antioxidant effects of urolithin A, the colonic metabolite of ellagic acid, on hepatocellular carcinomas HepG2 cells. Toxicol In Vitro. 2015;29(5):1107–15.

    Article  CAS  PubMed  Google Scholar 

  113. Wang P, Zhang SD, Jiao J, Wang W, Yu L, Zhao XL, et al. ROS -mediated p53 activation by juglone enhances apoptosis and autophagy in vivo and in vitro. Toxicol Appl Pharmacol. 2019;379:114647.

    Article  CAS  PubMed  Google Scholar 

  114. Zeng X, Liu H, Huang Z, Dong P, Chen X. Anticancer effect of arbutin on diethylnitrosamine-induced liver carcinoma in rats via the GRP and GADD pathway. J Environ Pathol Toxicol Oncol. 2022;41(1):15–26.

    Article  PubMed  Google Scholar 

  115. Lim WC, Kim H, Kim YJ, Jeon BN, Kang HB, Ko H. Catechol inhibits epidermal growth factor-induced epithelial-to-mesenchymal transition and stem cell-like properties in hepatocellular carcinoma cells. Sci Rep. 2020;10(1):7620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xu W, Shi Z, Yu X, Xu Y, Chen Y, He Y, et al. Salvianolic acid B exerts an anti-hepatocellular carcinoma effect by regulating the Hippo/YAP pathway and promoting pSmad3L to pSmad3C simultaneously. Eur J Pharmacol. 2023;939:175423.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge that many excellent literature regarding polyphenols combating liver cancer that has not been included here due to space limitations.

Funding

The authors declare that no funds, grants, or other supportwere received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. PIO Iii critically revised the manuscript and provided feedback. CN and JZ reviewed the literature and drafted the manuscript; CN generated the figure artwork. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chengu Niu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, C., Zhang, J. & Okolo, P. Liver cancer wars: plant-derived polyphenols strike back. Med Oncol 41, 116 (2024). https://doi.org/10.1007/s12032-024-02353-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02353-1

Keywords

Navigation