Skip to main content
Log in

HDAC11 mediates the ubiquitin-dependent degradation of p53 and inhibits the anti-leukemia effect of PD0166285

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cytarabine-resistant acute myeloid leukemia (AML) is a common phenomenon, necessitating the search for new chemotherapeutics. WEE1 participates in cell cycle checkpoint signaling and inhibitors targeting WEE1 (WEE1i) constitute a potential novel strategy for AML treatment. HDAC (histone deacetylase) inhibitors have been shown to enhance the anti-tumor effects of WEE1i but molecular mechanisms of HDAC remain poorly characterized. In this study, the WEE1 inhibitor PD0166285 showed a relatively good anti-leukemia effect. Notably, PD0166285 can arise the expression of HDAC11 which was negatively correlated with survival of AML patients. Moreover, HDAC11 can reduced the anti-tumor effect of PD0166285 through an effect on p53 stability and the changes in phosphorylation levels of MAPK pathways. Overall, the cell cycle inhibitor, PD0166285, is a potential chemotherapeutic drug for AML. These fundings contribute to a functional understanding of HDAC11 in AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data from UCSC Xena database are publicly available. The main data from this manuscript are available from the corresponding author on reasonable request.

References

  1. Aleem E, Arceci RJ. Targeting cell cycle regulators in hematologic malignancies. Front Cell Dev Biol. 2015;3:16.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lin Y, Kang T, Zhou BP. Doxorubicin enhances Snail/LSD1-mediated PTEN suppression in a PARP1-dependent manner. Cell Cycle. 2014;13(11):1708–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Niida H, Katsuno Y, Banerjee B, Hande MP, Nakanishi M. Specific role of Chk1 phosphorylations in cell survival and checkpoint activation. Mol Cell Biol. 2007;27(7):2572–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Garcia TB, Snedeker JC, Baturin D, et al. A small-molecule inhibitor of WEE1, AZD1775, synergizes with olaparib by impairing homologous recombination and enhancing DNA damage and apoptosis in acute leukemia. Mol Cancer Ther. 2017;16(10):2058–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou L, Zhang Y, Chen S, et al. A regimen combining the Wee1 inhibitor AZD1775 with HDAC inhibitors targets human acute myeloid leukemia cells harboring various genetic mutations. Leukemia. 2015;29(4):807–18.

    Article  CAS  PubMed  Google Scholar 

  6. Pai JT, Hsu CY, Hua KT, et al. NBM-T-BBX-OS01, semisynthesized from osthole, induced G1 growth arrest through HDAC6 inhibition in lung cancer cells. Molecules. 2015;20(5):8000–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Long J, Fang WY, Chang L, et al. Targeting HDAC3, a new partner protein of AKT in the reversal of chemoresistance in acute myeloid leukemia via DNA damage response. Leukemia. 2017;31(12):2761–70.

    Article  CAS  PubMed  Google Scholar 

  8. Long J, Jia MY, Fang WY, et al. FLT3 inhibition upregulates HDAC8 via FOXO to inactivate p53 and promote maintenance of FLT3-ITD+ acute myeloid leukemia. Blood. 2020;135(17):1472–83.

    Article  PubMed  Google Scholar 

  9. Johansson AC, Ansell A, Jerhammar F, et al. Cancer-associated fibroblasts induce matrix metalloproteinase-mediated cetuximab resistance in head and neck squamous cell carcinoma cells. Mol Cancer Res. 2012;10(9):1158–68.

    Article  CAS  PubMed  Google Scholar 

  10. Huang F, Sun J, Chen W, et al. HDAC4 inhibition disrupts TET2 function in high-risk MDS and AML. Aging (Albany NY). 2020;12(17):16759–74.

    Article  CAS  PubMed  Google Scholar 

  11. Sharma V, Wright KL, Epling-Burnette PK, Reuther GW. Metabolic vulnerabilities and epigenetic dysregulation in myeloproliferative neoplasms. Front Immunol. 2020;11:604142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bi L, Ren Y, Feng M, et al. HDAC11 regulates glycolysis through the LKB1/AMPK signaling pathway to maintain hepatocellular carcinoma stemness. Cancer Res. 2021;81(8):2015–28.

    Article  CAS  PubMed  Google Scholar 

  13. Yue L, Sharma V, Horvat NP, et al. HDAC11 deficiency disrupts oncogene-induced hematopoiesis in myeloproliferative neoplasms. Blood. 2020;135(3):191–207.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bora-Singhal N, Mohankumar D, Saha B, et al. Novel HDAC11 inhibitors suppress lung adenocarcinoma stem cell self-renewal and overcome drug resistance by suppressing Sox2. Sci Rep. 2020;10(1):4722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xiao C, Wang Y, Zheng M, et al. RBBP6 increases radioresistance and serves as a therapeutic target for preoperative radiotherapy in colorectal cancer. Cancer Sci. 2018;109(4):1075–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chao CC. Mechanisms of p53 degradation. Clin Chim Acta. 2015;438:139–47.

    Article  CAS  PubMed  Google Scholar 

  17. Saygin C, Carraway HE. Emerging therapies for acute myeloid leukemia. J Hematol Oncol. 2017;10(1):93.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Winer ES, Stone RM. Novel therapy in acute myeloid leukemia (AML): moving toward targeted approaches. Ther Adv Hematol. 2019;10:2040620719860645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lockhead S, Moskaleva A, Kamenz J, et al. The apparent requirement for protein synthesis during G2 phase is due to checkpoint activation. Cell Rep. 2020;32(2):107901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsai TY, Theriot JA, Ferrell JE Jr. Changes in oscillatory dynamics in the cell cycle of early Xenopus laevis embryos. PLoS Biol. 2014;12(2):e1001788.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mir SE, De Witt Hamer PC, Krawczyk PM, et al. In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell. 2010;18(3):244–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao L, Cueto MA, Asselbergs F, Atadja P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem. 2002;277(28):25748–55.

    Article  CAS  PubMed  Google Scholar 

  23. Thangapandian S, John S, Lee Y, Arulalapperumal V, Lee KW. Molecular modeling study on tunnel behavior in different histone deacetylase isoforms. PLoS ONE. 2012;7(11):e49327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Deubzer HE, Schier MC, Oehme I, et al. HDAC11 is a novel drug target in carcinomas. Int J Cancer. 2013;132(9):2200–8.

    Article  CAS  PubMed  Google Scholar 

  25. Bradbury CA, Khanim FL, Hayden R, et al. Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia. 2005;19(10):1751–9.

    Article  CAS  PubMed  Google Scholar 

  26. Yu Z, Wang R, Chen F, Wang J, Huang X. Five novel oncogenic signatures could be utilized as AFP-related diagnostic biomarkers for hepatocellular carcinoma based on next-generation sequencing. Dig Dis Sci. 2018;63(4):945–57.

    Article  CAS  PubMed  Google Scholar 

  27. Gong D, Zeng Z, Yi F, Wu J. Inhibition of histone deacetylase 11 promotes human liver cancer cell apoptosis. Am J Transl Res. 2019;11(2):983–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang W, Fu L, Li S, Xu Z, Li X. Histone deacetylase 11 suppresses p53 expression in pituitary tumor cells. Cell Biol Int. 2017;41(12):1290–5.

    Article  CAS  PubMed  Google Scholar 

  29. Li J, Wang Y, Sun Y, Lawrence TS. Wild-type TP53 inhibits G(2)-phase checkpoint abrogation and radiosensitization induced by PD0166285, a WEE1 kinase inhibitor. Radiat Res. 2002;157(3):322–30.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Li J, Booher RN, et al. Radiosensitization of p53 mutant cells by PD0166285, a novel G(2) checkpoint abrogator. Cancer Res. 2001;61(22):8211–7.

    CAS  PubMed  Google Scholar 

  31. Devine T, Dai MS. Targeting the ubiquitin-mediated proteasome degradation of p53 for cancer therapy. Curr Pharm Des. 2013;19(18):3248–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou R, Wu J, Tang X, et al. Histone deacetylase inhibitor AR-42 inhibits breast cancer cell growth and demonstrates a synergistic effect in combination with 5-FU. Oncol Lett. 2018;16(2):1967–74.

    PubMed  PubMed Central  Google Scholar 

  33. Ito A, Kawaguchi Y, Lai CH, et al. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J. 2002;21(22):6236–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li M, Luo J, Brooks CL, Gu W. Acetylation of p53 inhibits its ubiquitination by Mdm2. J Biol Chem. 2002;277(52):50607–11.

    Article  CAS  PubMed  Google Scholar 

  35. Liu Z, Wang Y, Gao T, et al. CPLM: a database of protein lysine modifications. Nucleic Acids Res. 2014;42:D531-36.

    Article  CAS  PubMed  Google Scholar 

  36. Wang G, Li S, Gilbert J, et al. Crucial roles for SIRT2 and AMPA receptor acetylation in synaptic plasticity and memory. Cell Rep. 2017;20(6):1335–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Caron C, Boyault C, Khochbin S. Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability. BioEssays. 2005;27(4):408–15.

    Article  CAS  PubMed  Google Scholar 

  38. Buglio D, Khaskhely NM, Voo KS, Martinez-Valdez H, Liu YJ, Younes A. HDAC11 plays an essential role in regulating OX40 ligand expression in Hodgkin lymphoma. Blood. 2011;117(10):2910–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thole TM, Lodrini M, Fabian J, et al. Neuroblastoma cells depend on HDAC11 for mitotic cell cycle progression and survival. Cell Death Dis. 2017;8(3):e2635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We also thank the UCSC Xena database for the contribution in our study.

Funding

This research was supported by grants from the National Natural Science Foundation of China (Grant Number 81772280), Key Technology Innovation Special of Key Industries of the Chongqing Science and Technology Bureau (Grant Number csct2022ycjh-bgzxm0034), and Chongqing Graduate Research Innovation Project Funding (CYS21229).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ZZ and LZ; investigation: ZZ, XC, and WD; resources: ZZ and PW; data curation: ZZ, XS, and SC; writing—original draft: ZZ; writing—review & editing: ZZ and YL; supervision: BL; project administration: BL.

Corresponding author

Correspondence to Beizhong Liu.

Ethics declarations

Conflict of interest

The author declares no conflicts of this manuscript.

Research involving human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 11 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zhong, L., Chu, X. et al. HDAC11 mediates the ubiquitin-dependent degradation of p53 and inhibits the anti-leukemia effect of PD0166285. Med Oncol 40, 325 (2023). https://doi.org/10.1007/s12032-023-02196-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02196-2

Keywords

Navigation