Skip to main content

Advertisement

Log in

The anticancer effects of thymol on HepG2 cell line

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

There is an increasing incidence of liver cancer, which is a hazard for global health. The present study was designed to evaluate possible cytotoxic, genotoxic, apoptotic, oxidant and antioxidant effects of thymol on hepatocellular carcinoma (HepG2) cell line. The cytotoxic effect of thymol on HepG2 cell line was determined by XTT test. We also used the HUVEC cell line to show whether thymol damages healthy cells. Oxidative stress level was determined with Total Oxidant Status (TOS) and Total Antioxidant Status (TAS) measurement kits. Apoptosis of cells was detected in flow cytometry with Annexin V apoptosis kit. Apoptotic gene expressions were analyzed by real-time PCR. Genotoxicity was determined by comet assay, which measures DNA damage. The thymol IC50 dose was found to be 11 μM on HepG2 cell line. This dose had no lethal effect on the healthy HUVEC cell line. While thymol significantly decreased the TOS level, it increased the TAS level significantly in HepG2 cells compared to control. Thymol significantly induced apoptosis in HepG2 cells (apoptosis rate in control group 1%, in thymol group 21%). Thymol did not alter the gene expressions of bax, bcl-2, and casp3, all of which are associated with apoptosis. Statistically significant change in favor of genotoxicity was observed in tail length measurements. Our results suggest that thymol decreases oxidative stress in HepG2 cell line, but it induces apoptosis and genotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380:1450–62. https://doi.org/10.1056/NEJMra1713263.

    Article  CAS  PubMed  Google Scholar 

  2. Cancer Today. https://gco.iarc.fr/today/online-analysis-pie?v=2020&mode=cancer&mode_population=continents&population=900&populations=900&key=total&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=7&group_cancer=1&include_nmsc=1&include_nmsc_other=1&half_pie=0&donut=0. Accessed 31 Jan 2023.

  3. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021. https://doi.org/10.1038/s41572-020-00240-3.

    Article  PubMed  Google Scholar 

  4. Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67:123–33. https://doi.org/10.1002/hep.29466.

    Article  CAS  PubMed  Google Scholar 

  5. Parham S, Kharazi AZ, Bakhsheshi-Rad HR, Nur H, Ismail AF, Sharif S, et al. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants (Basel). 2020;9:1–36. https://doi.org/10.3390/antiox9121309.

    Article  CAS  Google Scholar 

  6. Kowalczyk A, Przychodna M, Sopata S, Bodalska A, Fecka I. Thymol and thyme essential oil-new ınsights into selected therapeutic applications. Molecules. 2020. https://doi.org/10.3390/molecules25184125.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Salehi B, Mishra AP, Shukla I, Sharifi-Rad M, del Mar Contreras M, Segura-Carretero A, et al. Thymol, thyme, and other plant sources: health and potential uses. Phytother Res. 2018;32:1688–706. https://doi.org/10.1002/ptr.6109.

    Article  PubMed  Google Scholar 

  8. Hashemipour H, Kermanshahi H, Golian A, Veldkamp T. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens. Poult Sci. 2013;92:2059–69.

    Article  CAS  PubMed  Google Scholar 

  9. Zarrini G, Delgosha ZB, Moghaddam KM, Shahverdi AR. Post-antibacterial effect of thymol. Pharm Biol. 2010;48:633–6.

    Article  CAS  PubMed  Google Scholar 

  10. Nieto G. Biological activities of three essential oils of the lamiaceae family. Medicines. 2017;4:63.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Horvathova E, Navarova J, Galova E, Sevcovicova A, Chodakova L, Snahnicanova Z, et al. Assessment of antioxidative, chelating, and DNA-Protective effects of selected essential oil components (Eugenol, Carvacrol, Thymol, Borneol, Eucalyptol) of plants and intact rosmarinus officinalis oil. J Agric Food Chem. 2014;62:6632–9.

    Article  CAS  PubMed  Google Scholar 

  12. Liang D, Li F, Fu Y, Cao Y, Song X, Wang T, et al. Thymol inhibits LPS-stimulated inflammatory response via down-regulation of NF-κB and MAPK signaling pathways in mouse mammary epithelial cells. Inflammation. 2014;37:214–22.

    Article  CAS  PubMed  Google Scholar 

  13. Islam MT, Khalipha ABR, Bagchi R, Mondal M, Smrity SZ, Uddin SJ, et al. Anticancer activity of thymol: a literature-based review and docking study with Emphasis on its anticancer mechanisms. IUBMB Life. 2019;71:9–19. https://doi.org/10.1002/iub.1935.

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Wen J, Du C, Hu S, Chen J, Zhang S, et al. Thymol inhibits bladder cancer cell proliferation via inducing cell cycle arrest and apoptosis. Biochem Biophys Res Commun. 2017;491:530–6. https://doi.org/10.1016/j.bbrc.2017.04.009.

    Article  CAS  PubMed  Google Scholar 

  15. De La Chapa JJ, Singha PK, Lee DR, Gonzales CB. Thymol inhibits oral squamous cell carcinoma growth via mitochondria-mediated apoptosis. J Oral Pathol Med. 2018;47:674–82. https://doi.org/10.1111/jop.12735.

    Article  CAS  PubMed  Google Scholar 

  16. Hassan HFH, Mansour AM, Salama SA, El-Sayed ESM. The chemopreventive effect of thymol against dimethylhydrazine and/or high fat diet-induced colon cancer in rats: relevance to NF-κB. Life Sci. 2021. https://doi.org/10.1016/j.lfs.2021.119335.

    Article  PubMed  Google Scholar 

  17. Aghamohammadi A, Hosseinimehr SJ, Ghasemi A, Azadbakht M, Pourfallah TA. Radiosensitization effects of a Zataria multiflora extract on human glioblastoma cells. Asian Pac J Cancer Prev. 2015;16:7285–90. https://doi.org/10.7314/APJCP.2015.16.16.7285.

    Article  PubMed  Google Scholar 

  18. Lee KP, Kim JE, Park WH, Hong H. Regulation of C6 glioma cell migration by thymol. Oncol Lett. 2016;11:2619–24. https://doi.org/10.3892/ol.2016.4237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qoorchi Moheb Seraj F, Heravi-Faz N, Soltani A, Ahmadi SS, Shahbeiki F, Talebpour A, et al. Thymol has anticancer effects in U-87 human malignant glioblastoma cells. Mol Biol Rep. 2022;49:9623–32. https://doi.org/10.1007/s11033-022-07867-3.

    Article  CAS  PubMed  Google Scholar 

  20. Özgen Ö, Özen Eroğlu G, Küçükhüseyin Ö, Akdeniz N, Hepokur C, Kuruca S, et al. Vitamin D increases the efficacy of cisplatin on bladder cancer cell lines. Mol Biol Rep. 2023. https://doi.org/10.1007/s11033-022-08044-2.

    Article  PubMed  Google Scholar 

  21. Arzumanian VA, Kiseleva OI, Poverennaya EV. The curious case of the HepG2 cell line: 40 years of expertise. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms222313135.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sharifi-Rad J, Sharifi-Rad M, Hoseini-Alfatemi SM, Iriti M, Sharifi-Rad M, Sharifi-Rad M. Composition, cytotoxic and antimicrobial activities of Satureja intermedia C.A. Mey essential oil. Int J Mol Sci. 2015;16:17812–25. https://doi.org/10.3390/ijms160817812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fitsiou E, Anestopoulos I, Chlichlia K, Galanis A, Kourkoutas I, Panayiotidis MI, et al. Antioxidant and antiproliferative properties of the essential oils of Satureja thymbra and Satureja parnassica and their major constituents. Anticancer Res. 2016;36:5757–63. https://doi.org/10.21873/anticanres.11159.

    Article  CAS  PubMed  Google Scholar 

  24. Ferraz RPC, Bomfim DS, Carvalho NC, Soares MBP, Da Silva TB, Machado WJ, et al. Cytotoxic effect of leaf essential oil of Lippia gracilis Schauer (Verbenaceae). Phytomedicine. 2013;20:615–21.

    Article  CAS  PubMed  Google Scholar 

  25. Kavak E, Mutlu D, Ozok O, Arslan S, Kivrak A. Design, synthesis and pharmacological evaluation of novel Artemisinin-Thymol. Nat Prod Res. 2020. https://doi.org/10.1080/14786419.2020.1865954.

    Article  Google Scholar 

  26. Lv R, Chen Z. Thymol inhibits cell migration and invasion by downregulating the activation of PI3K/AKT and ERK pathways in human colon cancer cells. Trop J Pharm Res. 2018;16:2895–901. https://doi.org/10.4314/tjpr.v16i12.13.

    Article  CAS  Google Scholar 

  27. Elshafie HS, Armentano MF, Carmosino M, Bufo SA, De Feo V, Camele I. Cytotoxic activity of Origanum vulgare L. on hepatocellular carcinoma cell line HepG2 and evaluation of its biological activity. Molecules. 2017;22:1435. https://doi.org/10.3390/molecules22091435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ozkan A, Erdogan A. A comparative study of the antioxidant/prooxidant effects of carvacrol and thymol at various concentrations on membrane and DNA of parental and drug resistant H1299 cells. Nat Prod Commun. 2012;7:1557–60. https://doi.org/10.1177/1934578X1200701201.

    Article  CAS  PubMed  Google Scholar 

  29. Palabiyik SS, Karakus E, Halici Z, Cadirci E, Bayir Y, Ayaz G, et al. The protective effects of carvacrol and thymol against paracetamol-induced toxicity on human hepatocellular carcinoma cell lines (HepG2). Hum Exp Toxicol. 2016;35:1252–63. https://doi.org/10.1177/0960327115627688.

    Article  CAS  PubMed  Google Scholar 

  30. Shettigar NB, Das S, Rao NB, Rao SBS. Thymol, a monoterpene phenolic derivative of cymene, abrogates mercury-induced oxidative stress resultant cytotoxicity and genotoxicity in hepatocarcinoma cells. Environ Toxicol. 2015;30:968–80. https://doi.org/10.1002/tox.21971.

    Article  CAS  PubMed  Google Scholar 

  31. Kaloni D, Diepstraten ST, Strasser A, Kelly GL. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis. 2023;28:20–38. https://doi.org/10.1007/s10495-022-01780-7.

    Article  CAS  PubMed  Google Scholar 

  32. Raji-Amirhasani A, Khaksari M, Soltani Z, Saberi S, Iranpour M, Darvishzadeh Mahani F, et al. Beneficial effects of time and energy restriction diets on the development of experimental acute kidney injury in rat: Bax/Bcl-2 and histopathological evaluation. BMC Nephrol. 2023;24:59. https://doi.org/10.1186/s12882-023-03104-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Salakou S, Kardamakis D, Tsamandas A, Zolota V, Apostolakis E, Tzelepi V, et al. Increased Bax/Bcl-2 ratio up-regulates caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis. In Vivo (Brooklyn). 2007;21:123–32.

    CAS  Google Scholar 

  34. Zhu L, Han MB, Gao Y, Wang H, Dai L, Wen Y, et al. Curcumin triggers apoptosis via upregulation of Bax/Bcl-2 ratio and caspase activation in SW872 human adipocytes. Mol Med Rep. 2015;12:1151–6. https://doi.org/10.3892/mmr.2015.3450.

    Article  CAS  PubMed  Google Scholar 

  35. Roos WP, Kaina B. DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett. 2013;332:237–48.

    Article  CAS  PubMed  Google Scholar 

  36. Sancar A, Lindsey-Boltz LA, Ünsal-Kaçmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Ann Rev Biochem. 2004;73:39–85. https://doi.org/10.1146/annurev.biochem.73.011303.073723.

    Article  CAS  PubMed  Google Scholar 

  37. Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med. 2006;12:440–50.

    Article  CAS  PubMed  Google Scholar 

  38. Shekh R, Tiwari RK, Ahmad A, Ahmad I, Alabdallah NM, Saeed M, et al. Ethanolic extract of Coleus aromaticus leaves impedes the proliferation and instigates apoptotic cell death in liver cancer HepG2 cells through repressing JAK/STAT cascade. J Food Biochem. 2022. https://doi.org/10.1111/jfbc.14368.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The summary of this publication was presented online with an oral presentation at the " Turkish Society of Physiological Sciences, 46th National Physiology Congress". In addition, the abstract was published in the journal "Acta Physiologica" with the title "Cytotoxic, Genotoxic, Apoptotic, Oxidant and Antioxidant Effects of Thymol on Hep-G2 Cell Line".

Funding

This study was supported by Pamukkale University Scientific Research Projects Coordination Unit through project number 2021BSP009.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by FA, MTA and MS. The first draft of the manuscript was written by FA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fatih Altintas.

Ethics declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Consent to participate

All authors consent to participate in this article.

Consent for publication

All authors consent to the publication of this article.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altintas, F., Tunc-Ata, M., Secme, M. et al. The anticancer effects of thymol on HepG2 cell line. Med Oncol 40, 260 (2023). https://doi.org/10.1007/s12032-023-02134-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02134-2

Keywords

Navigation