Skip to main content

Advertisement

Log in

The impact of hypoxia on extracellular vesicle secretome profile of cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) are emerging as key mediators of cell-to-cell communications and signal transporters between tumor and stroma, and hypoxia is a critical characteristic of tumor microenvironment (TME) in solid cancers. Hypoxia stimulates tumor cells to generate and secrete more EVs, and the EVs shed from cancer transfer biological information to boost hypoxia and hypoxia inducible factor (HIF) functionality. Hypoxia alters EV secretome profile to carry pro-tumorigenic factors for promoting numerous tumor-related processes including increased cancer cell proliferation and survival, immune escape, aberrant angiogenesis, and invasion and metastasis. Exosomal hypoxia inducible factor (HIF)-1α is an essential driver of epithelial-mesenchymal transition (EMT) and stemness profile in cancer. Hypoxic cancer-derived EVs are also contributed to therapy resistance. In fact, EVs are messengers of hypoxic tolerance in cancer, which enable adaptation of tumor cells to changes occurring within TME for their further resistance and metastasis. Tracing EVs shed from hypoxic tumor cells into plasma provide important information about the genomic signature of cancer. In this review, we aimed to discuss about key tumorigenic events promoted by inter-connections between hypoxia and EVs, mainly exosomes, secreted into tumor area focusing on key hallmarks of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Zeng Z, Zhao Y, Chen Q, et al. Hypoxic exosomal HIF-1α-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysis. Oncogene. 2021;40(36):5505–17.

    Article  CAS  PubMed  Google Scholar 

  2. Hsu Y-L, Hung J-Y, Chang W-A, et al. Hypoxic lung-cancer-derived extracellular vesicle microRNA-103a increases the oncogenic effects of macrophages by targeting PTEN. Mol Ther. 2018;26(2):568–81.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao C, Wang H, Xiong C, et al. Hypoxic glioblastoma release exosomal VEGF-A induce the permeability of blood-brain barrier. Biochem Biophys Res Commun. 2018;502(3):324–31.

    Article  CAS  PubMed  Google Scholar 

  4. Xue M, Chen W, Xiang A, et al. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Mol Cancer. 2017;16(1):1–13.

    Article  Google Scholar 

  5. Mortezaee K, Majidpoor J, Fathi F. Extracellular vesicle isolation, purification and evaluation in cancer diagnosis. Expert Rev Mol Med. 2022;24:1–44.

    Article  Google Scholar 

  6. Park JE, Dutta B, Tse SW, et al. Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift. Oncogene. 2019;38(26):5158–73.

    Article  CAS  PubMed  Google Scholar 

  7. Mortezaee K, Majidpoor J. The impact of hypoxia on immune state in cancer. Life Sci. 2021;286:120057.

    Article  CAS  PubMed  Google Scholar 

  8. Yu F, Liang M, Huang Y, et al. Hypoxic tumor-derived exosomal miR-31-5p promotes lung adenocarcinoma metastasis by negatively regulating SATB2-reversed EMT and activating MEK/ERK signaling. J Exp Clin Cancer Res. 2021;40(1):1–15.

    Article  CAS  Google Scholar 

  9. Zhang Y, Tan J, Miao Y, et al. The effect of extracellular vesicles on the regulation of mitochondria under hypoxia. Cell Death Dis. 2021;12(4):1–14.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li L, Cao B, Liang X, et al. Microenvironmental oxygen pressure orchestrates an anti-and pro-tumoral γδ T cell equilibrium via tumor-derived exosomes. Oncogene. 2019;38(15):2830–43.

    Article  CAS  PubMed  Google Scholar 

  11. Kucharzewska P, Christianson HC, Welch JE, et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci. 2013;110(18):7312–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ayala-Mar S, Donoso-Quezada J, González-Valdez J. Clinical implications of exosomal PD-L1 in cancer immunotherapy. J Immunol Res. 2021;2021:1–18.

    Article  Google Scholar 

  13. Zhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. 2018;20(3):332–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hoshino A, Kim HS, Bojmar L, et al. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell. 2020;182(4):1044–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haderk F, Schulz R, Iskar M, et al. Tumor-derived exosomes modulate PD-L1 expression in monocytes. Sci immunol. 2017;2(13):eaah5509.

    Article  PubMed  Google Scholar 

  16. Li L, Li C, Wang S, et al. Exosomes Derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotypeexosomal miR-21 mediates hypoxia-induced cell invasiveness. Can Res. 2016;76(7):1770–80.

    Article  CAS  Google Scholar 

  17. Mortezaee K. Organ tropism in solid tumor metastasis: an updated review. Future Oncol. 2021;17(15):1943–61.

    Article  CAS  PubMed  Google Scholar 

  18. King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12(1):1–10.

    Article  Google Scholar 

  19. Wang T, Gilkes DM, Takano N, et al. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci. 2014;111(31):E3234–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang H, Zhang H, Yang Y, et al. Hypoxia induced exosomal circRNA promotes metastasis of Colorectal Cancer via targeting GEF-H1/RhoA axis. Theranostics. 2020;10(18):8211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park JE, Tan HS, Datta A, et al. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics. 2010;9(6):1085–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Panigrahi GK, Praharaj PP, Peak TC, et al. Hypoxia-induced exosome secretion promotes survival of African-American and Caucasian prostate cancer cells. Sci Rep. 2018;8(1):1–13.

    Google Scholar 

  23. Wang D, Zhao C, Xu F, et al. Cisplatin-resistant NSCLC cells induced by hypoxia transmit resistance to sensitive cells through exosomal PKM2. Theranostics. 2021;11(6):2860.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gu W, Gong L, Wu X, et al. Hypoxic TAM-derived exosomal miR-155-5p promotes RCC progression through HuR-dependent IGF1R/AKT/PI3K pathway. Cell Death Discovery. 2021;7(1):1–13.

    Article  Google Scholar 

  25. Chen X, Ying X, Wang X, et al. Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncol Rep. 2017;38(1):522–8.

    Article  CAS  PubMed  Google Scholar 

  26. Ren R, Sun H, Ma C, et al. Colon cancer cells secrete exosomes to promote self-proliferation by shortening mitosis duration and activation of STAT3 in a hypoxic environment. Cell Biosci. 2019;9(1):1–9.

    Article  Google Scholar 

  27. Gonzalez-King H, García NA, Ontoria-Oviedo I, et al. Hypoxia inducible factor-1α potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes. Stem cells. 2017;35(7):1747–59.

    Article  CAS  PubMed  Google Scholar 

  28. Guo Z, Wang X, Yang Y, et al. Hypoxic tumor-derived exosomal long noncoding RNA UCA1 promotes angiogenesis via miR-96-5p/AMOTL2 in pancreatic cancer. Mol Ther-Nucl Acids. 2020;22:179–95.

    Article  CAS  Google Scholar 

  29. Tadokoro H, Umezu T, Ohyashiki K, et al. Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells. J Biol Chem. 2013;288(48):34343–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dai G, Yang Y, Liu S, et al. Hypoxic breast cancer cell-derived exosomal SNHG1 promotes breast cancer growth and angiogenesis via regulating miR-216b-5p/JAK2 axis. Cancer Manag Res. 2022;14:123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang Z, Feng Y. Exosomes derived from hypoxic colorectal cancer cells promote angiogenesis through Wnt4-induced β-catenin signaling in endothelial cells. Oncol Res. 2017;25(5):651.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Svensson KJ, Kucharzewska P, Christianson HC, et al. Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2–mediated heparin-binding EGF signaling in endothelial cells. Proc Natl Acad Sci. 2011;108(32):13147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Umezu T, Tadokoro H, Azuma K, et al. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood, J Am Soc Hematol. 2014;124(25):3748–57.

    CAS  Google Scholar 

  34. Hsu Y, Hung J, Chang W, et al. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene. 2017;36(34):4929–42.

    Article  CAS  PubMed  Google Scholar 

  35. Lian XY, Zhang H, Liu Q, et al. Ovarian cancer-excreted exosomal miR-199a-5p suppresses tumor metastasis by targeting hypoxia-inducible factor-2α in hypoxia microenvironment. Cancer Commun. 2020;40(8):380.

    Article  Google Scholar 

  36. Li J, Yuan H, Xu H, et al. Hypoxic cancer-secreted exosomal miR-182-5p promotes glioblastoma angiogenesis by targeting kruppel-like factor 2 and 4miR-182-5p promotes glioblastoma angiogenesis. Mol Cancer Res. 2020;18(8):1218–31.

    Article  CAS  PubMed  Google Scholar 

  37. Halder LD, Jo EA, Hasan MZ, et al. Immune modulation by complement receptor 3-dependent human monocyte TGF-β1-transporting vesicles. Nat Commun. 2020;11(1):1–19.

    Article  Google Scholar 

  38. Nour AM, Modis Y. Endosomal vesicles as vehicles for viral genomes. Trends Cell Biol. 2014;24(8):449–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang F, Li R, Yang Y, et al. Specific decrease in B-cell-derived extracellular vesicles enhances post-chemotherapeutic CD8+ T cell responses. Immunity. 2019;50(3):738–50.

    Article  CAS  PubMed  Google Scholar 

  40. Mortezaee K, Majidpoor J. Dysregulated metabolism: a friend-to-foe skewer of macrophages. Int Rev Immunol. 2022. https://doi.org/10.1080/08830185.2022.2095374.

    Article  PubMed  Google Scholar 

  41. Chen X, Zhou J, Li X, et al. Exosomes derived from hypoxic epithelial ovarian cancer cells deliver microRNAs to macrophages and elicit a tumor-promoted phenotype. Cancer Lett. 2018;435:80–91.

    Article  CAS  PubMed  Google Scholar 

  42. Qian M, Wang S, Guo X, et al. Hypoxic glioma-derived exosomes deliver microRNA-1246 to induce M2 macrophage polarization by targeting TERF2IP via the STAT3 and NF-κB pathways. Oncogene. 2020;39(2):428–42.

    Article  CAS  PubMed  Google Scholar 

  43. Lu Q, Wang X, Zhu J, et al. Hypoxic tumor-derived exosomal Circ0048117 facilitates M2 macrophage polarization acting as miR-140 sponge in esophageal squamous cell carcinoma. Onco Targets Ther. 2020;13:11883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mortezaee K, Majidpoor J, Kharazinejad E. Epithelial-mesenchymal transition in cancer stemness and heterogeneity: updated. Med Oncol. 2022;39(12):1–14.

    Article  Google Scholar 

  45. Wang X, Luo G, Zhang K, et al. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasistumor-promoting Effects of hypoxic exosomal miR-301a. Can Res. 2018;78(16):4586–98.

    Article  CAS  Google Scholar 

  46. Xu J, Zhang J, Zhang Z, et al. Hypoxic glioma-derived exosomes promote M2-like macrophage polarization by enhancing autophagy induction. Cell Death Dis. 2021;12(4):1–16.

    Article  Google Scholar 

  47. Mortezaee K. Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives. Life Sci. 2021;277:119627.

    Article  CAS  PubMed  Google Scholar 

  48. Guo X, Qiu W, Wang J, et al. Glioma exosomes mediate the expansion and function of myeloid-derived suppressor cells through microRNA-29a/Hbp1 and microRNA-92a/Prkar1a pathways. Int J Cancer. 2019;144(12):3111–26.

    Article  CAS  PubMed  Google Scholar 

  49. Guo X, Qiu W, Liu Q, et al. Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways. Oncogene. 2018;37(31):4239–59.

    Article  CAS  PubMed  Google Scholar 

  50. Mortezaee K, Majidpoor J. (Im) maturity in tumor ecosystem. Front Oncol. 2022;11:813897.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Berchem G, Noman MZ, Bosseler M, et al. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer. Oncoimmunology. 2016;5(4):e1062968.

    Article  PubMed  Google Scholar 

  52. Poggio M, Hu T, Pai C-C, et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell. 2019;177(2):414–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang G, He L, Wang S, et al. EV PD-L1 is correlated with clinical features and contributes to T cell suppression in pediatric thyroid cancer. J Clin Endocrinol Metab. 2020;105(8):e2970–81.

    Article  Google Scholar 

  54. Chen G, Huang AC, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560(7718):382–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang K, Zhang J, Bao C. Exosomal circEIF3K from cancer-associated fibroblast promotes colorectal cancer (CRC) progression via miR-214/PD-L1 axis. BMC Cancer. 2021;21(1):1–9.

    Article  Google Scholar 

  56. Dou D, Ren X, Han M, et al. Cancer-associated fibroblasts-derived exosomes suppress immune cell function in breast cancer via the miR-92/PD-L1 pathway. Front Immunol. 2020;11:2026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu Y, Lu M, Chen J, et al. Extracellular vesicles derived from lung cancer cells exposed to intermittent hypoxia upregulate programmed death ligand 1 expression in macrophages. Sleep Breath. 2021. https://doi.org/10.1007/s11325-021-02369-1.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dorayappan KDP, Wallbillich JJ, Saini U, et al. Hypoxia-facilitated exosomal release from ovarian cancer cells is regulated by STAT3 and is associated with increased metastatic tumor burden. Gynecol Oncol. 2016;141:66.

    Article  Google Scholar 

  59. Aga M, Bentz GL, Raffa S, et al. Exosomal HIF1α supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene. 2014;33(37):4613–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhan Y, Du J, Min Z, et al. Carcinoma-associated fibroblasts derived exosomes modulate breast cancer cell stemness through exonic circHIF1A by miR-580-5p in hypoxic stress. Cell death discovery. 2021;7(1):1–15.

    Article  Google Scholar 

  61. La Camera G, Gelsomino L, Malivindi R, et al. Adipocyte-derived extracellular vesicles promote breast cancer cell malignancy through HIF-1α activity. Cancer Lett. 2021;521:155–68.

    Article  PubMed  Google Scholar 

  62. Sun Z, Sun D, Feng Y, et al. Exosomal linc-ROR mediates crosstalk between cancer cells and adipocytes to promote tumor growth in pancreatic cancer. Mol Ther-Nucl Acids. 2021;26:253–68.

    Article  CAS  Google Scholar 

  63. Rouzbahani E, Majidpoor J, Najafi S, et al. Cancer stem cells in immunoregulation and bypassing anti-checkpoint therapy. Biomed Pharmacother. 2022;156:113906.

    Article  CAS  PubMed  Google Scholar 

  64. Dorayappan KDP, Wanner R, Wallbillich JJ, et al. Hypoxia-induced exosomes contribute to a more aggressive and chemoresistant ovarian cancer phenotype: a novel mechanism linking STAT3/Rab proteins. Oncogene. 2018;37(28):3806–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang X, Sai B, Wang F, et al. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol Cancer. 2019;18(1):1–15.

    Article  Google Scholar 

  66. Shan Y, You B, Shi S, et al. Hypoxia-induced matrix metalloproteinase-13 expression in exosomes from nasopharyngeal carcinoma enhances metastases. Cell Death Dis. 2018;9(3):1–13.

    Article  Google Scholar 

  67. Ramteke A, Ting H, Agarwal C, et al. Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol Carcinog. 2015;54(7):554–65.

    Article  CAS  PubMed  Google Scholar 

  68. Deep G, Jain A, Kumar A, et al. Exosomes secreted by prostate cancer cells under hypoxia promote matrix metalloproteinases activity at pre-metastatic niches. Mol Carcinog. 2020;59(3):323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sun H, Meng Q, Shi C, et al. Hypoxia-inducible exosomes facilitate liver-tropic premetastatic niche in colorectal cancer. Hepatology. 2021;74(5):2633–51.

    Article  CAS  PubMed  Google Scholar 

  70. O’Neill CP, Gilligan KE, Dwyer RM. Role of extracellular vesicles (EVs) in cell stress response and resistance to cancer therapy. Cancers. 2019;11(2):136.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yue X, Lan F, Xia T. Hypoxic glioma cell-secreted exosomal miR-301a activates Wnt/β-catenin signaling and promotes radiation resistance by targeting TCEAL7. Mol Ther. 2019;27(11):1939–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li J, Liao T, Liu H, et al. Hypoxic glioma Stem cell-derived exosomes containing Linc01060 promote progression of glioma by regulating the MZF1/c-Myc/HIF1α AxisLinc01060 promotes the progression of glioma. Can Res. 2021;81(1):114–28.

    Article  CAS  Google Scholar 

  73. Xi L, Peng M, Liu S, et al. Hypoxia-stimulated ATM activation regulates autophagy-associated exosome release from cancer-associated fibroblasts to promote cancer cell invasion. J Extracell Vesicles. 2021;10(11):e12146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dong C, Liu X, Wang H, et al. Hypoxic non-small-cell lung cancer cell-derived exosomal miR-21 promotes resistance of normoxic cell to cisplatin. Onco Targets Ther. 2019;12:1947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Takahashi K, Yan IK, Kogure T, et al. Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio. 2014;4:458–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work received ethical approval from Kurdistan University of Medical Sciences (Ethical code: IR.MUK.REC.1401.428).

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, KM; article collection and scanning, KM; writing original. Draft, review and editing, KM and JM. Authors have read and agreed to publish the manuscript.

Corresponding author

Correspondence to Keywan Mortezaee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent for publication

Approved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortezaee, K., Majidpoor, J. The impact of hypoxia on extracellular vesicle secretome profile of cancer. Med Oncol 40, 128 (2023). https://doi.org/10.1007/s12032-023-01995-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-01995-x

Keywords

Navigation