Skip to main content

Advertisement

Log in

Role of vitamin D in targeting cancer and cancer stem cell populations and its therapeutic implications

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cancer is recognized globally as the second-most dominating and leading cause of morbidities. Fighting the global health epidemic threat posed by cancer requires progress and improvements in imaging techniques, surgical techniques, radiotherapy, and chemotherapy. The existence of a small subpopulation of undifferentiated cells known as cancer stem cells has been supported by accumulating evidence and ongoing research. According to clinical data, cancer recurrence, tumor development, and metastasis are thought to be caused by CSCs. Nutritional or dietary supplements can help you to fight against cancer and cope with the treatment side effects. Vitamin D, sometimes known as the sunshine vitamin, is produced in the skin in reaction to sunlight. Vitamin D deficiency is hazardous to any degree, increasing the risk of diseases such as cancer and disorders like osteoporosis. Bioactive vitamin D, or calcitriol, regulates several biological pathways. Many modes of action of Vitamin D might be helpful in protecting somatic stem cells (e.g., DNA damage repair and oxidative stress protection) or restricting cancer stem cell growth (e.g., cell cycle arrest, cell apoptosis). Researchers have recently begun to investigate the inhibitory effects of dietary vitamin D on cancer stem cells. In this review, we investigated the therapeutic impact of vitamin D and its molecular processes to target cancer and cancer stem cells as well.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365–408.

    Article  CAS  Google Scholar 

  2. Li Z, Shi J, Wang Z, Chen H, Liu Y. Nutrient status of vitamin d among cancer patients. Chin J Lung Cancer. 2021;24(5):345–50.

    Google Scholar 

  3. Cianferotti L, Bertoldo F, Bischoff-Ferrari HA, Bruyere O, Cooper C, Cutolo M, Kanis JA, Kaufman JM, Reginster JY, Rizzoli R, Brandi ML. Vitamin D supplementation in the prevention and management of major chronic diseases not related to mineral homeostasis in adults: research for evidence and a scientific statement from the European society for clinical and economic aspects of osteoporosis. Endocrine. 2017;56(2):232–41.

    Article  Google Scholar 

  4. Suh N, Maehr H, Augeri D. Vitamin D compounds and cancer stem cells in cancer prevention. In: Pezzuto JM, Vang O, editors. Natural products for cancer chemoprevention: single compounds and combinations. Cham: Springer; 2020.

    Google Scholar 

  5. Hu PS, Li T, Lin JF, Qiu MZ, Wang DS, Liu ZX, et al. VDR–SOX2 signaling promotes colorectal cancer stemness and malignancy in an acidic microenvironment. Signal Transduct Target Ther. 2020;5(1):183.

    Article  CAS  Google Scholar 

  6. Maund SL, Cramer SD. The tissue-specific stem cell as a target for chemoprevention. Stem Cell Rev Rep. 2011;7(2):307–14.

    Article  CAS  Google Scholar 

  7. Amirsaadat S, Pilehvar-Soltanahmadi Y, Zarghami F, Alipour S, Ebrahimnezhad Z, Zarghami N. Silibinin-loaded magnetic nanoparticles inhibit hTERT gene expression and proliferation of lung cancer cells. Artif Cells Nanomed Biotechnol. 2017;45(8):1649–56.

    Article  CAS  Google Scholar 

  8. Ji M, Liu L, Hou Y, Li B. 1α,25-Dihydroxyvitamin D3 restrains stem cell-like properties of ovarian cancer cells by enhancing vitamin D receptor and suppressing CD44. Oncol Rep. 2019;41(6):3393–403.

    CAS  Google Scholar 

  9. Ma Y, Zhang P, Wang F, Yang J, Liu Z, Qin H. Association between vitamin D and risk of colorectal cancer: a systematic review of prospective studies. J Clin Oncol. 2011;29(28):3775–82.

    Article  CAS  Google Scholar 

  10. Gregory KJ, Zhao B, Bielenberg DR, Dridi S, Wu J, Jiang W, Huang B, Pirie-Shepherd S, Fannon M. Vitamin D binding protein-macrophage activating factor directly inhibits proliferation, migration, and uPAR expression of prostate cancer cells. PLoS ONE. 2010;5(10):e13428.

    Article  Google Scholar 

  11. Saburi E, Saburi A, Ghanei M. Promising role for Gc-MAF in cancer immunotherapy: from bench to bedside. Casp J Intern Med. 2017;8(4):228–38.

    Google Scholar 

  12. Thyer L, Ward E, Smith R, Branca JJ, Morucci G, Gulisano M, Noakes D, Eslinger R, Pacini S. GC protein-derived macrophage-activating factor decreases α-N-acetylgalactosaminidase levels in advanced cancer patients. Oncoimmunology. 2013;2(8):25769.

    Article  Google Scholar 

  13. Saburi E, Tavakol-Afshari J, Biglari S, Mortazavi Y. Is α-N-acetylgalactosaminidase the key to curing cancer? A mini-review and hypothesis. J BUON. 2017;22:1372–7.

    Google Scholar 

  14. Yang T, Ran Y. Targeting cancer stem cells for cancer therapy. Chin J Cancer Biotherapy. 2022;28:651–8.

    Google Scholar 

  15. So JY, Suh N. Targeting cancer stem cells in solid tumors by vitamin D. J Steroid Biochem Mol Biol. 2015;148:79–85.

    Article  CAS  Google Scholar 

  16. Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, Gibson H, Gordon D, Copeland T, D’Agostino D, Friedenberg G. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2019;380(1):33–44.

    Article  CAS  Google Scholar 

  17. Jeon SM, Shin E. Exploring vitamin D metabolism and function in cancer. Exp Mol Med. 2018;50(4):1–4.

    Google Scholar 

  18. Srivastava AK, Rizvi A, Cui T, Han C, Banerjee A, Naseem I, Zheng Y, Wani AA, Wang QE. Depleting ovarian cancer stem cells with calcitriol. Oncotarget. 2018;9(18):14481–91.

    Article  Google Scholar 

  19. Zhao Y, Wei D, Zhang Y, Ji J. Panoramic view of microRNAs in regulating cancer stem cells. Essays Biochem. 2022. https://doi.org/10.1042/EBC20220007.

    Article  Google Scholar 

  20. Gleba JJ, Kłopotowska D, Banach J, Mielko KA, Turlej E, Maciejewska M, et al. Micro-RNAs in response to active forms of vitamin D3 in human leukemia and lymphoma cells. Int J Mol Sci. 2022;23(9):5019.

    Article  CAS  Google Scholar 

  21. Moreno J, Krishnan AV, Feldman D. Molecular mechanisms mediating the anti-proliferative effects of Vitamin D in prostate cancer. J Steroid Biochem Mol Biol. 2005;97(1–2):31–6.

    Article  CAS  Google Scholar 

  22. So JY, Lee HJ, Smolarek AK, Paul S, Wang CX, Maehr H, Uskokovic M, Zheng X, Conney AH, Cai L, Liu F. A novel Gemini vitamin D analog represses the expression of a stem cell marker CD44 in breast cancer. Mol Pharmacol. 2011;79(3):360–7.

    Article  CAS  Google Scholar 

  23. Dou R, Ng K, Giovannucci EL, Manson JE, Qian ZR, Ogino S. Vitamin D and colorectal cancer: molecular, epidemiological and clinical evidence. Br J Nutr. 2016;115(9):1643–60.

    Article  CAS  Google Scholar 

  24. Tabasi N, Rastin M, Mahmoudi M, Ghoryani M, Mirfeizi Z, Rabe SZT, et al. Influence of vitamin d on cell cycle, apoptosis, and some apoptosis related moleculses in systemic lupus erythematosus. Iran J Basic Med Sci. 2015;18(11):1107–11.

    Google Scholar 

  25. Pacini S, Punzi T, Morucci G, Gulisano M, Ruggiero M. Effects of vitamin D-binding protein-derived macrophage-activating factor on human breast cancer cells. Anticancer Res. 2012;32(1):45–52.

    CAS  Google Scholar 

  26. Bhoora S, Punchoo R. Policing cancer: vitamin D arrests the cell cycle. Int J Mol Sci. 2020;21(23):9296.

    Article  CAS  Google Scholar 

  27. Zhang D, Liu S, Liu Z, Ma C, Jiang Y, Sun C, Li K, Cao G, Lin Z, Wang P, Zhang J. Polyphyllin I induces cell cycle arrest in prostate cancer cells via the upregulation of IL6 and P21 expression. Medicine (Baltimore). 2019;98(44):e17743.

    Article  CAS  Google Scholar 

  28. Chiang KC, Yeh CN, Chen SC, Shen SC, Hsu JT, Yeh TS, Pang JH, Su LJ, Takano M, Kittaka A, Juang HH. MART-10, a new generation of vitamin D analog, is more potent than 1α,25-dihydroxyvitamin D(3) in inhibiting cell proliferation and inducing apoptosis in ER+ MCF-7 breast cancer cells. Evid Based Complement Alternat Med. 2012;2012:310872.

    Article  Google Scholar 

  29. Carlberg C, Muñoz A. An update on vitamin D signaling and cancer. Boca Raton: Academic Press; 2022.

    Book  Google Scholar 

  30. Brosseau C, Pirianov G, Colston KW. Role of insulin-like growth factor binding protein-3 in 1, 25-dihydroxyvitamin-D3-induced breast cancer cell apoptosis. Int J Cell Biol. 2013. https://doi.org/10.1155/2013/960378.

    Article  Google Scholar 

  31. Fleet JC, Desmet M, Johnson R, Li Y. Vitamin D and cancer: a review of molecular mechanisms. Biochem J. 2012;441:61–76.

    Article  CAS  Google Scholar 

  32. Buschke S, Stark HJ, Cerezo A, Prätzel-Wunder S, Boehnke K, Kollar J, Langbein L, Heldin CH, Boukamp P. A decisive function of transforming growth factor-β/Smad signaling in tissue morphogenesis and differentiation of human HaCaT keratinocytes. Mol Biol Cell. 2011;22(6):782–94.

    Article  CAS  Google Scholar 

  33. Negri M, Gentile A, de Angelis C, Montò T, Patalano R, Colao A, et al. Vitamin D-induced molecular mechanisms to potentiate cancer therapy and to reverse drug-resistance in cancer cells. Nutrients. 2020;12:1798.

    Article  CAS  Google Scholar 

  34. Wu Y, Craig TA, Lutz WH, Kumar R. Identification of 1 alpha,25-dihydroxyvitamin D3 response elements in the human transforming growth factor beta 2 gene. Biochemistry. 1999;38(9):2654–60.

    Article  CAS  Google Scholar 

  35. Zhang X, Li P, Bao J, Nicosia SV, Wang H, Enkemann SA, Bai W. Suppression of death receptor-mediated apoptosis by 1,25-dihydroxyvitamin D3 revealed by microarray analysis. J Biol Chem. 2005;280(42):35458–68.

    Article  CAS  Google Scholar 

  36. Krishnan AV, Shinghal R, Raghavachari N, Brooks JD, Peehl DM, Feldman D. Analysis of vitamin D-regulated gene expression in LNCaP human prostate cancer cells using cDNA microarrays. Prostate. 2004;59(3):243–51.

    Article  CAS  Google Scholar 

  37. Cheng X, Xu X, Chen D, Zhao F, Wang W. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed Pharmacother. 2019;110:473–81.

    Article  CAS  Google Scholar 

  38. Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transd Target Therapy. 2022;7:1–23.

    Google Scholar 

  39. Egan JB, Thompson PA, Vitanov MV, Bartik L, Jacobs ET, Haussler MR, Gerner EW, Jurutka PW. Vitamin D receptor ligands, adenomatous polyposis coli, and the vitamin D receptor FokI polymorphism collectively modulate beta-catenin activity in colon cancer cells. Mol Carcinog. 2010;49(4):337–52.

    Article  CAS  Google Scholar 

  40. Xu H, Posner GH, Stevenson M, Campbell FC. ApcMIN modulation of vitamin D secosteroid growth control. Carcinogenesis. 2010;31(8):1434–41.

    Article  CAS  Google Scholar 

  41. Shah S, Islam MN, Dakshanamurthy S, Rizvi I, Rao M, Herrell R, Zinser G, Valrance M, Aranda A, Moras D, Norman A. The molecular basis of vitamin D receptor and beta-catenin crossregulation. Mol Cell. 2006;21(6):799–809.

    Article  Google Scholar 

  42. de La Puente-Yagüe M, Cuadrado-Cenzual MA, Ciudad-Cabañas MJ, Hernández-Cabria M, Collado-Yurrita L. Vitamin D: and its role in breast cancer. Kaohsiung J Med Sci. 2018;34(8):423–7.

    Article  Google Scholar 

  43. Vanhevel J, Verlinden L, Doms S, Wildiers H, Verstuyf A. The role of vitamin D in breast cancer risk and progression. Endocr Relat Cancer. 2022;29:R33–55.

    Article  CAS  Google Scholar 

  44. Se B, Tj M, Tc P, Nl W. Calcitriol-induced apoptosis in LNCaP cells is blocked by overexpression of Bcl-2. Endocrinology. 2000;141(1):10–7.

    Article  Google Scholar 

  45. Ben-Eltriki M, Deb S, Adomat H, Guns ES. Calcitriol and 20(S)-protopanaxadiol synergistically inhibit growth and induce apoptosis in human prostate cancer cells. J Steroid Biochem Mol Biol. 2016;158:207–19.

    Article  CAS  Google Scholar 

  46. Tavera-Mendoza LE, Westerling T, Libby E, Marusyk A, Cato L, Cassani R, Cameron LA, Ficarro SB, Marto JA, Klawitter J, Brown M. Vitamin D receptor regulates autophagy in the normal mammary gland and in luminal breast cancer cells. Proc Natl Acad Sci USA. 2017;114(11):E2186–94.

    Article  CAS  Google Scholar 

  47. Ambjørn M, Ejlerskov P, Liu Y, Lees M, Jäättelä M, Issazadeh-Navikas S. IFNB1/interferon-β-induced autophagy in MCF-7 breast cancer cells counteracts its proapoptotic function. Autophagy. 2013;9(3):287–302.

    Article  Google Scholar 

  48. Chen L, Yang R, Qiao W, Yuan X, Wang S, Goltzman D, Miao D. 1,25-Dihydroxy vitamin D prevents tumorigenesis by inhibiting oxidative stress and inducing tumor cellular senescence in mice. Int J Cancer. 2018;143(2):368–82.

    Article  CAS  Google Scholar 

  49. Kallay E, Pietschmann P, Toyokuni S, Bajna E, Hahn P, Mazzucco K, Bieglmayer C, Kato S, Cross HS. Characterization of a vitamin D receptor knockout mouse as a model of colorectal hyperproliferation and DNA damage. Carcinogenesis. 2001;22(9):1429–35.

    Article  CAS  Google Scholar 

  50. Fedirko V, Bostick RM, Long Q, Flanders WD, McCullough ML, Sidelnikov E, et al. Effects of supplemental vitamin D and calcium on oxidative DNA damage marker in normal colorectal mucosa: a randomized clinical trial. Cancer Epidemiol Biomarkers Prev. 2010;19(1):280–91.

    Article  CAS  Google Scholar 

  51. Uberti F, Morsanuto V, Molinari C. Vitamin D in oxidative stress and diseases. In: Gowder SJ, editor. A critical evaluation of vitamin D—basic overview. London: InTech; 2017.

    Google Scholar 

  52. Swami S, Raghavachari N, Muller UR, Bao YP, Feldman D. Vitamin D growth inhibition of breast cancer cells: gene expression patterns assessed by cDNA microarray. Breast Cancer Res Treat. 2003;80(1):49–62.

    Article  CAS  Google Scholar 

  53. Kovalenko PL, Zhang Z, Cui M, Clinton SK, Fleet JC. 1,25 Dihydroxy vitamin D-mediated orchestration of anticancer, transcript-level effects in the immortalized, non-transformed prostate epithelial cell line, RWPE1. BMC Genomics. 2010;11(1):1–5.

    Article  Google Scholar 

  54. Zhang X, Nicosia S, Bai W. Vitamin D receptor is a novel drug target for ovarian cancer treatment. Curr Cancer Drug Targets. 2006;6(3):229–44.

    Article  Google Scholar 

  55. Finetti F, Travelli C, Ercoli J, Colombo G, Buoso E, Trabalzini L. Prostaglandin E2 and cancer: insight into tumor progression and immunity. Biology. 2020;9:434.

    Article  CAS  Google Scholar 

  56. Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K. Cyclooxygenase-2 in cancer: a review. J Cell Physiol. 2019;234:5683.

    Article  CAS  Google Scholar 

  57. Fan P, He L, Hu N, Luo J, Zhang J, Mo LF, Wang YH, Pu D, Lv XH, Hao ZM, Ding CH. Effect of 1,25-(OH)2D3 on proliferation of fibroblast-like synoviocytes and expressions of pro-inflammatory cytokines through regulating MicroRNA-22 in a rat model of rheumatoid arthritis. Cell Physiol Biochem. 2017;42(1):145–55.

    Article  CAS  Google Scholar 

  58. Moreno J, Krishnan AV, Swami S, Nonn L, Peehl DM, Feldman D. Regulation of prostaglandin metabolism by calcitriol attenuates growth stimulation in prostate cancer cells. Cancer Res. 2005;65(17):7917–25.

    Article  CAS  Google Scholar 

  59. Guan X. Cancer metastases: challenges and opportunities. Acta Pharm Sin B. 2015;5(5):402–18.

    Article  Google Scholar 

  60. Wu X, Hu W, Lu L, Zhao Y, Zhou Y, Xiao Z, Zhang L, Zhang H, Li X, Li W, Wang S. Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment. Acta Pharm Sin B. 2019;9(2):203–19.

    Article  Google Scholar 

  61. Campbell CL, Savarese DMF, Quesenberry PJ, Savarese TM. Expression of multiple angiogenic cytokines in cultured normal human prostate epithelial cells: predominance of vascular endothelial growth factor. Int J Cancer. 1999;80(6):868–74.

    Article  CAS  Google Scholar 

  62. Wang SP, Wu SQ, Huang SH, Tang YX, Meng LQ, Liu F, et al. FDI-6 inhibits the expression and function of FOXM1 to sensitize BRCA-proficient triple-negative breast cancer cells to Olaparib by regulating cell cycle progression and DNA damage repair. Cell Death Dis. 2021;12(12):1–12.

    Article  Google Scholar 

  63. Hou YF, Gao SH, Wang P, Zhang HM, Liu LZ, Ye MX, Zhou GM, Zhang ZL, Li BY. 1α,25(OH)2D3 suppresses the migration of ovarian cancer SKOV-3 cells through the inhibition of epithelial–mesenchymal transition. Int J Mol Sci. 2016;17(8):1285.

    Article  Google Scholar 

  64. Koivisto O, Hanel A, Carlberg C. Key vitamin D target genes with functions in the immune system. Nutrients. 2020;12(4):140.

    Article  Google Scholar 

  65. Bishop E, Ismailova A, Dimeloe S, Hewison M, White JH. Vitamin D and immune regulation: antibacterial, antiviral, anti-inflammatory. JBMR Plus. 2021;5(1):e10405.

    Article  Google Scholar 

  66. Liu W, Zhang L, Xu HJ, Li Y, Hu CM, Yang JY, et al. The anti-inflammatory effects of vitamin D in tumorigenesis. Int J Mol Sci. 2018;19:2736.

    Article  Google Scholar 

  67. Keum N, Lee DH, Greenwood DC, Manson JE, Giovannucci E. Vitamin D supplementation and total cancer incidence and mortality: a meta-analysis of randomized controlled trials. Ann Oncol. 2019;30:733–43.

    Article  CAS  Google Scholar 

  68. Zhang Y, Fang F, Tang J, Jia L, Feng Y, Xu P, et al. Association between vitamin D supplementation and mortality: systematic review and meta-analysis. BMJ. 2019;366:14673.

    Google Scholar 

  69. Chandler PD, Chen WY, Ajala ON, Hazra A, Cook N, Bubes V, et al. Effect of vitamin D3 supplements on development of advanced cancer: a secondary analysis of the VITAL randomized clinical trial. JAMA Netw Open. 2020;3(11):e2025850–e2025850.

    Article  Google Scholar 

  70. Frankling MH, Klasson C, Sandberg C, Nordström M, Warnqvist A, Bergqvist J, et al. ‘Palliative-D’—vitamin D supplementation to palliative cancer patients: a double blind, randomized placebo-controlled multicenter trial. Cancers (Basel). 2021;13(15):3707.

    Article  Google Scholar 

  71. Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer. 2014;14:342–57.

    Article  CAS  Google Scholar 

  72. Zeichner SB, Koru-Sengul T, Shah N, Liu Q, Markward NJ, Montero AJ, et al. Improved clinical outcomes associated with vitamin D supplementation during adjuvant chemotherapy in patients with HER2+ nonmetastatic breast cancer. Clin Breast Cancer. 2015;15(1):e1–11.

    Article  CAS  Google Scholar 

  73. Ng K, Venook AP, Sato K, Hollis BW, Niedzwiecki D, Ye C, et al. Vitamin D status and survival of metastatic colorectal cancer patients: results from CALGB/SWOG 80405 (Alliance). J Clin Oncol. 2015;33:3503.

    Article  Google Scholar 

  74. Dalhoff K, Dancey J, Astrup L, Skovsgaard T, Hamberg KJ, Lofts FJ, et al. A phase II study of the vitamin D analogue seocalcitol in patients with inoperable hepatocellular carcinoma. Br J Cancer. 2003;89(2):252–7.

    Article  CAS  Google Scholar 

  75. Gulliford T, English J, Colston KW, Menday P, Moller S, Coombes RC. A phase I study of the vitamin D analogue EB 1089 in patients with advanced breast and colorectal cancer. Br J Cancer. 1998;78(1):6–13.

    Article  CAS  Google Scholar 

  76. Sundaram S, Sea A, Feldman S, Strawbridge R, Hoopes PJ, Demidenko E, et al. The combination of a potent vitamin D3 analog, EB 1089, with ionizing radiation reduces tumor growth and induces apoptosis of MCF-7 breast tumor xenografts in nude mice. Clin Cancer Res. 2003;9(6):2350–6.

    CAS  Google Scholar 

  77. Prudencio J, Akutsu N, Benlimame N, Wang T, Bastien Y, Lin R, et al. Action of low calcemic 1α,25-dihydroxyvitamin D3 analogue EB1089 in head and neck squamous cell carcinoma. JNCI J Natl Cancer Inst. 2001;93(10):745–53. https://doi.org/10.1093/jnci/93.10.745.

    Article  CAS  Google Scholar 

  78. Ghous Z, Akhter J, Pourgholami MH, Morris DL. Inhibition of hepatocellular cancer by EB1089: in vitro and in vivo study. Anticancer Res. 2008;28(6A):3757–61.

    CAS  Google Scholar 

  79. Zhang X, Jiang F, Li P, Li C, Ma Q, Nicosia SV, et al. Growth suppression of ovarian cancer xenografts in nude mice by vitamin D analogue EB1089. Clin Cancer Res. 2005;11(1):323.

    Article  CAS  Google Scholar 

  80. Li Z, Jia Z, Gao Y, Xie D, Wei D, Cui J, Mishra L, Huang S, Zhang Y, Xie K. Activation of vitamin D receptor signaling downregulates the expression of nuclear FOXM1 protein and suppresses pancreatic cancer cell stemness. Clin Cancer Res. 2015;21(4):844–53.

    Article  CAS  Google Scholar 

  81. Sharma K, Goehe RW, Di X, Hicks MA, Torti SV, Torti FM, et al. A novel cytostatic form of autophagy in sensitization of non-small cell lung cancer cells to radiation by vitamin D and the vitamin D analog, EB 1089. Autophagy. 2014;10(12):2346.

    Article  CAS  Google Scholar 

  82. So JY, Smolarek AK, Salerno DM, Maehr H, Uskokovic M, Liu F, et al. Targeting CD44-STAT3 signaling by Gemini vitamin D analog leads to inhibition of invasion in basal-like breast cancer. PLoS ONE. 2013;8(1):e54020.

    Article  CAS  Google Scholar 

  83. Wahler J, So JY, Kim YC, Liu F, Maehr H, Uskokovic M, et al. Inhibition of the transition of ductal carcinoma in situ to invasive ductal carcinoma by a gemini vitamin D analog. Cancer Prev Res. 2014;7(6):617–26.

    Article  CAS  Google Scholar 

  84. Medioni J, Deplanque G, Ferrero JM, Maurina T, Rodier JMP, Raymond E, et al. Phase I safety and pharmacodynamic of inecalcitol, a novel VDR agonist with docetaxel in metastatic castration-resistant prostate cancer patients. Clin Cancer Res. 2014;20(17):4471.

    Article  CAS  Google Scholar 

  85. Eelen G, Verlinden L, Rochel N, Claessens F, De Clercq P, Vandewalle M, et al. Superagonistic action of 14-epi-analogs of 1,25-dihydroxyvitamin D explained by vitamin D receptor-coactivator interaction. Mol Pharmacol. 2005;67(5):1566–73.

    Article  CAS  Google Scholar 

  86. Vanhevel J, Verlinden L, Loopmans S, Doms S, Janssens I, Bevers S, et al. The combination of the CDK4/6 inhibitor, palbociclib, with the vitamin D3 analog, inecalcitol, has potent in vitro and in vivo anticancer effects in hormone-sensitive breast cancer, but has a more limited effect in triple-negative breast cancer. Front Endocrinol. 2022. https://doi.org/10.3389/fendo.2022.886238.

    Article  Google Scholar 

  87. Okamoto R, Delansorne R, Wakimoto N, Doan NB, Akagi T, Shen M, et al. Inecalcitol, an analog of 1α,25(OH) 2D 3, induces growth arrest of androgen-dependent prostate cancer cells. Int J Cancer. 2012;130(10):2464.

    Article  CAS  Google Scholar 

  88. Ma Y, Yu WD, Hidalgo AA, Luo W, Delansorne R, Johnson CS, et al. Inecalcitol, an analog of 1,25D3, displays enhanced antitumor activity through the induction of apoptosis in a squamous cell carcinoma model system. Cell Cycle. 2013;12(5):743–52.

    Article  CAS  Google Scholar 

  89. Arensman MD, Nguyen P, Kershaw KM, Lay AR, Ostertag-Hill CA, Sherman MH, et al. Calcipotriol targets LRP6 to inhibit wnt signaling in pancreatic cancer. Mol Cancer Res. 2015;13(11):1509.

    Article  CAS  Google Scholar 

  90. Khriesha A, Bustan Ji Y, Farha RA, Al-Abbasi R, Abu-Irmaileh B. Evaluation of the potential anticancer activity of different vitamin D metabolites on colorectal and breast cancer cell lines. Horm Mol Biol Clin Investig. 2021;42(1):3–9.

    Article  CAS  Google Scholar 

  91. Salomón DG, Grioli SM, Buschiazzo M, Mascaró E, Vitale C, Radivoy G, et al. Novel alkynylphosphonate analogue of calcitriol with potent antiproliferative effects in cancer cells and lack of calcemic activity. ACS Med Chem Lett. 2011;2(7):503–8.

    Article  Google Scholar 

  92. Ferronato MJ, Obiol DJ, Fermento ME, Gandini NA, Alonso EN, Salomón DG, et al. The alkynylphosphonate analogue of calcitriol EM1 has potent anti-metastatic effects in breast cancer. J Steroid Biochem Mol Biol. 2015;154:285–93.

    Article  CAS  Google Scholar 

  93. Lawrence JA, Akman SA, Melin SA, Case LD, Schwartz GG. Oral paricalcitol (19-nor-1,25-Dihydroxyvitamin D2) in women receiving chemotherapy for metastatic breast cancer: a feasibility trial. Cancer Biol Ther. 2013;14(6):476.

    Article  CAS  Google Scholar 

  94. Schwartz GG, Hall MC, Stindt D, Patton S, Lovato J, Torti FM. Phase I/II study of 19-nor-1α-25-dihydroxyvitamin D2 (paricalcitol) in advanced, androgen-insensitive prostate cancer. Clin Cancer Res. 2005;11(24):8680.

    Article  CAS  Google Scholar 

  95. Chung VM, Borazanci EH, Jameson GS, Evans R, Downes M, Truitt ML, et al. A SU2C catalyst randomized phase II trial of pembrolizumab with or without paricalcitol in patients with stage IV pancreatic cancer who have been placed in best possible response. J Clin Oncol. 2018;36(15_suppl):TPS4154–TPS4154.

    Article  Google Scholar 

  96. Reiter FP, Ye L, Bösch F, Wimmer R, Artmann R, Ziesch A, et al. Antifibrotic effects of hypocalcemic vitamin D analogs in murine and human hepatic stellate cells and in the CCl4 mouse model. Lab Investig. 2019;99(12):1906.

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by JBM, DS, YMY, RFA, AK, AP, DM, AG, DB, SB, KB, BD, SJK, and EŠ. The first draft of the manuscript was written by SK and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shivam Kumar.

Ethics declarations

Competing interests

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marigoudar, J.B., Sarkar, D., Yuguda, Y.M. et al. Role of vitamin D in targeting cancer and cancer stem cell populations and its therapeutic implications. Med Oncol 40, 2 (2023). https://doi.org/10.1007/s12032-022-01855-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01855-0

Keywords

Navigation