Skip to main content

Advertisement

Log in

Reprogramming the tumor microenvironment to improve the efficacy of cancer immunotherapies

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The immunotherapeutic approaches based on checkpoint inhibitors, tumor vaccination, immune cell-based therapy, and cytokines were developed to engage the patient's immune system against cancer and better survival of them. While potent, however, preclinical and clinical data have identified that abnormalities in the tumor microenvironment (TME) can affect the efficacy of immunotherapies in some cancers. It is therefore imperative to develop new therapeutic interventions that will enable to overcome tumor-supportive TME and restrain anti-tumor immunity in patients that acquire resistance to current immunotherapies. Therefore, recognition of the essential nature of the tolerogenic TME may lead to a shift from the immune-suppressive TME to an immune-stimulating phenotype. Here, we review the composition of the TME and its effect on tumor immunoediting and then present how targeted monotherapy or combination therapies can be employed for reprogramming educated TME to improve current immunotherapies outcomes or elucidate potential therapeutic targets.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACT:

Adaptive cell therapies

ADAM:

Activity of disintegrin and metalloproteinase

ADCC:

Antibody-dependent cytotoxicity

CAR-T:

Chimeric antigen receptor T-cell

ECM:

Extracellular matrix

ICB:

Immune checkpoint blockade

MCTs:

Monocarboxylate transporters

TAMs:

Tumor-associated macrophages

TECs:

Tumor-associated ECs

TIL:

Tumor-infiltrating lymphocytes

References

  1. Zhu S, Zhang T, Zheng L, Liu H, Song W, Liu D, et al. Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol Oncol. 2021;14(1):1–33.

    Article  Google Scholar 

  2. Yu Y. Molecular classification and precision therapy of cancer: immune checkpoint inhibitors. Front Med. 2018;12(2):229–35.

    Article  PubMed  Google Scholar 

  3. Mirsoian A, Bouchlaka MN, Sckisel GD, Chen M, Pai C-CS, Maverakis E, et al. Adiposity induces lethal cytokine storm after systemic administration of stimulatory immunotherapy regimens in aged mice. J Exp Med. 2014;211(12):2373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stephan SB, Taber AM, Jileaeva I, Pegues EP, Sentman CL, Stephan MT. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat Biotechnol. 2015;33(1):97–101.

    Article  CAS  PubMed  Google Scholar 

  5. O’Connor CM, Sheppard S, Hartline CA, Huls H, Johnson M, Palla SL, et al. Adoptive T-cell therapy improves treatment of canine non–hodgkin lymphoma post chemotherapy. Sci Rep. 2012;2(1):1–12.

    Article  Google Scholar 

  6. Jasim SA, Yasin G, Cartono C, Sevbitov A., Shichiyakh RA, Al-Husseini Y, et al. Survey of ground beetles inhabiting agricultural crops in south-east Kazakhstan. Braz J Biol. 2022;84.

  7. Marofi F, Rahman HS, Al-Obaidi ZMJ, Jalil AT, Abdelbasset WK, Suksatan W, et al. Novel CAR T therapy is a ray of hope in the treatment of seriously ill AML patients. Stem Cell Res Ther. 2021;12(1):1–23.

    Article  Google Scholar 

  8. Tan S, Li D, Zhu X. Cancer immunotherapy: Pros, cons and beyond. Biomed Pharmacother. 2020;124: 109821.

    Article  PubMed  Google Scholar 

  9. Caruana I, Savoldo B, Hoyos V, Weber G, Liu H, Kim ES, et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med. 2015;21(5):524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Köhnke T, Krupka C, Tischer J, Knösel T, Subklewe M. Increase of PD-L1 expressing B-precursor ALL cells in a patient resistant to the CD19/CD3-bispecific T cell engager antibody blinatumomab. J Hematol Oncol. 2015;8(1):1–5.

    Article  Google Scholar 

  11. Sockolosky JT, Trotta E, Parisi G, Picton L, Su LL, Le AC, et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science. 2018;359(6379):1037–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abdelbasset WK, Jasim SA, Rudiansyah M, Huldani H, Margiana R, Jalil AT, et al. Treatment of pilocarpine-induced epileptic seizures in adult male mice. Braz J Biol. 2022;84.

  13. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8(5):761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shidal C, Singh NP, Nagarkatti P, Nagarkatti M. MicroRNA-92 Expression in CD133+ melanoma stem cells regulates immunosuppression in the tumor microenvironment via integrin-dependent activation of TGFβmiR-92 regulates immunosuppression by cancer stem cells. Can Res. 2019;79(14):3622–35.

    Article  CAS  Google Scholar 

  15. Oh E, Hong J, Yun C-O. Regulatory T cells induce metastasis by increasing TGF-β and enhancing the epithelial–mesenchymal transition. Cells. 2019;8(11):1387.

    Article  CAS  PubMed Central  Google Scholar 

  16. Vacca P, Cantoni C, Vitale M, Prato C, Canegallo F, Fenoglio D, et al. Crosstalk between decidual NK and CD14+ myelomonocytic cells results in induction of Tregs and immunosuppression. Proc Natl Acad Sci USA. 2010;107(26):11918–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steinert G, Schölch S, Niemietz T, Iwata N, García SA, Behrens B, et al. Immune escape and survival mechanisms in circulating tumor cells of colorectal cancer. Can Res. 2014. https://doi.org/10.1158/0008-5472.CAN-13-1885.

    Article  Google Scholar 

  18. Hussein HK, Aubead M, Kzar HH, Karim YS, Amin AH, Al-Gazally ME. et al. Association of cord blood asprosin concentration with atherogenic lipid profile and anthropometric indices. Diabetol Metab Syndr. 2022;14(1):1–6.

    Google Scholar 

  19. Headley MB, Bins A, Nip A, Roberts EW, Looney MR, Gerard A, et al. Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature. 2016;531(7595):513–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bosi A, Zanellato S, Bassani B, Albini A, Musco A, Cattoni M, et al. Natural killer cells from malignant pleural effusion are endowed with a decidual-like proangiogenic polarization. J Immunol Res. 2018;2018:2438598.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim D, Wu Y, Oh Y-K. Targeting cancer-associated fibroblasts in immunotherapy. System Drug Deliv Strateg. 2022. https://doi.org/10.1016/B978-0-323-85781-9.00007-5.

    Article  Google Scholar 

  22. Cohen N, Shani O, Raz Y, Sharon Y, Hoffman D, Abramovitz L, et al. Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of Chitinase 3-like 1. Oncogene. 2017;36(31):4457–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang X, Lin Y, Shi Y, Li B, Liu W, Yin W, et al. FAP Promotes Immunosuppression by Cancer-Associated Fibroblasts in the Tumor Microenvironment via STAT3–CCL2 Signaling. Can Res. 2016;76(14):4124–35.

    Article  CAS  Google Scholar 

  24. Raya I, Chupradit S, Mustafa YF, H Oudaha K, M Kadhim M, Turki Jalil A, et al. Carboxymethyl chitosan nano-fibers for controlled releasing 5-fluorouracil anticancer drug. J Nanostruct. 2022;12(1):136–143.

    CAS  Google Scholar 

  25. Wang T-t, Zhao Y-l, Peng L-s, Chen N, Chen W, Lv Y-p, et al. Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway. Gut. 2017;66(11):1900–11.

    Article  CAS  PubMed  Google Scholar 

  26. Cheng Y, Li H, Deng Y, Tai Y, Zeng K, Zhang Y, et al. Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immune suppression in hepatocellular carcinoma. Cell Death Dis. 2018;9(4):1–11.

    Article  Google Scholar 

  27. Givel A-M, Kieffer Y, Scholer-Dahirel A, Sirven P, Cardon M, Pelon F, et al. miR200-regulated CXCL12β promotes fibroblast heterogeneity and immunosuppression in ovarian cancers. Nat Commun. 2018;9(1):1–20.

    Article  CAS  Google Scholar 

  28. Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS ONE. 2009;4(11): e7965.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ansari MJ, Bokov D, Markov A, Jalil AT, Shalaby MN, Suksatan W, et al. Cancer combination therapies by angiogenesis inhibitors; a comprehensive review. Cell Commun Signal. 2022;20(1):1–23.

    Article  Google Scholar 

  30. Cheng J, Deng Y, Yi H, Wang G, Fu B, Chen W, et al. Hepatic carcinoma-associated fibroblasts induce IDO-producing regulatory dendritic cells through IL-6-mediated STAT3 activation. Oncogenesis. 2016;5(2):e198-e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 2019;9(8):1102–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gorchs L, Fernández Moro C, Bankhead P, Kern KP, Sadeak I, Meng Q, et al. Human pancreatic carcinoma-associated fibroblasts promote expression of co-inhibitory markers on CD4+ and CD8+ T-cells. Front Immunol. 2019;10:847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Torres S, Bartolomé RA, Mendes M, Barderas R, Fernandez-Aceñero MJ, Peláez-García A, et al. Proteome profiling of cancer-associated fibroblasts identifies novel proinflammatory signatures and prognostic markers for colorectal cancer. Clin Cancer Res. 2013;19(21):6006–19.

    Article  CAS  PubMed  Google Scholar 

  34. Sakemura R, Hefazi M, Siegler EL, Cox MJ, Larson DP, Hansen MJ, et al. Targeting cancer-associated fibroblasts in the bone marrow prevents resistance to CART-cell therapy in multiple myeloma. Blood. 2022. https://doi.org/10.1182/blood.2021012811.

    Article  PubMed  Google Scholar 

  35. Hussein GM, Mohammed SM, Faris M, Mohammed A, Kadhim MJ, Awadh SA, et al. Find new channel for overcoming chemoresistance in cancers: Role of stem cells-derived exosomal microRNAs. Int J Biol Macromol. 2022.

  36. Sherman MH, Ruth TY, Engle DD, Ding N, Atkins AR, Tiriac H, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014;159(1):80–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti–PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA. 2013;110(50):20212–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chakravarthy A, Khan L, Bensler NP, Bose P, De Carvalho DD. TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat Commun. 2018;9(1):1–10.

    Article  Google Scholar 

  39. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17(8):457–74.

    Article  PubMed  Google Scholar 

  40. Rocha R, Torres Á, Ojeda K, Uribe D, Rocha D, Erices J, et al. The adenosine A3 receptor regulates differentiation of glioblastoma stem-like cells to endothelial cells under hypoxia. Int J Mol Sci. 2018;19(4):1228.

    Article  PubMed Central  Google Scholar 

  41. Liu B, Khalid I, Patra I, Kuzichkin OR, Sivaraman R, Jalil AT, et al. The effect of hydrophilic and hydrophobic surfaces on the thermal and atomic behavior of ammonia/copper nanofluid using molecular dynamics simulation. J Mol Liq. 2022;364:119925.

    Article  CAS  Google Scholar 

  42. Pittet CL, Newcombe J, Prat A, Arbour N. Human brain endothelial cells endeavor to immunoregulate CD8 T cells via PD-1 ligand expression in multiple sclerosis. J Neuroinflamm. 2011;8(1):1–12.

    Article  Google Scholar 

  43. Motz GT, Santoro SP, Wang L-P, Garrabrant T, Lastra RR, Hagemann IS, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 2014;20(6):607–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goveia J, Rohlenova K, Taverna F, Treps L, Conradi L-C, Pircher A, et al. An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates. Cancer Cell. 2020;37(1):21-36.e13.

    Article  CAS  PubMed  Google Scholar 

  45. Pitt J, Marabelle A, Eggermont A, Soria J-C, Kroemer G, Zitvogel L. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 2016;27(8):1482–92.

    Article  CAS  PubMed  Google Scholar 

  46. Jasim SA, Hadi JM, Opulencia MJC, Karim YS, Mahdi AB, Kadhim MM, et al. MXene/metal and polymer nanocomposites: preparation, properties, and applications. J Alloys Compd. 2022;165404.

  47. Yang Y, Wang C, Sun H, Jiang Z, Zhang Y, Pan Z. Apatinib prevents natural killer cell dysfunction to enhance the efficacy of anti-PD-1 immunotherapy in hepatocellular carcinoma. Cancer Gene Ther. 2021;28(1):89–97.

    Article  CAS  PubMed  Google Scholar 

  48. Kang N, Choi SY, Kim BN, Yeo CD, Park CK, Kim YK, et al. Hypoxia-induced cancer stemness acquisition is associated with CXCR4 activation by its aberrant promoter demethylation. BMC Cancer. 2019;19(1):1–11.

    Article  Google Scholar 

  49. Pàez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Viñals F, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009;15(3):220–31.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mashayekhi S, Rasoulpoor S, Shabani S, Esmaeilizadeh N, Serati-Nouri H, Sheervalilou R, et al. Curcumin-loaded mesoporous silica nanoparticles/nanofiber composites for supporting long-term proliferation and stemness preservation of adipose-derived stem cells. Int J Pharm. 2020;587: 119656.

    Article  CAS  PubMed  Google Scholar 

  51. Mohandesnezhad S, Pilehvar-Soltanahmadi Y, Alizadeh E, Goodarzi A, Davaran S, Khatamian M, et al. In vitro evaluation of Zeolite-nHA blended PCL/PLA nanofibers for dental tissue engineering. Mater Chem Phys. 2020;252: 123152.

    Article  CAS  Google Scholar 

  52. Zhao G, Hooman M, Yarigarravesh M, Algarni M, Opulencia MJC, Alsaikhan F, et al. Vibration analysis of size dependent micro FML cylindrical shell reinforced by CNTs based on modified couple stress theory. Arab J Chem. 2022;15(10):104115.

    Article  CAS  Google Scholar 

  53. Chen H-W, Chen H-Y, Wang L-T, Wang F-H, Fang L-W, Lai H-Y, et al. Mesenchymal stem cells tune the development of monocyte-derived dendritic cells toward a myeloid-derived suppressive phenotype through growth-regulated oncogene chemokines. J Immunol. 2013;190(10):5065–77.

    Article  CAS  PubMed  Google Scholar 

  54. Najar M, Raicevic G, Kazan HF, De Bruyn C, Bron D, Toungouz M, et al. Immune-related antigens, surface molecules and regulatory factors in human-derived mesenchymal stromal cells: the expression and impact of inflammatory priming. Stem Cell Rev Rep. 2012;8(4):1188–98.

    Article  CAS  PubMed  Google Scholar 

  55. Hass R. Role of MSC in the tumor microenvironment. Cancers. 2020;12(8):2107.

    Article  CAS  PubMed Central  Google Scholar 

  56. Mandapathil M, Szczepanski MJ, Szajnik M, Ren J, Jackson EK, Johnson JT, et al. Adenosine and prostaglandin E2 cooperate in the suppression of immune responses mediated by adaptive regulatory T cells. J Biol Chem. 2010;285(36):27571–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rudiansyah M, Jasim SA, Mohammad Pour ZG, Athar SS, Jeda AS, Doewes RI, et al. Coronavirus disease 2019 (COVID‐19) update: From metabolic reprogramming to immunometabolism. J Med Virol. 2022.

  58. Biswas S, Mandal G, Chowdhury SR, Purohit S, Payne KK, Anadon C, et al. Exosomes produced by mesenchymal stem cells drive differentiation of myeloid cells into immunosuppressive M2-polarized macrophages in breast cancer. J Immunol. 2019;203(12):3447–60.

    Article  CAS  PubMed  Google Scholar 

  59. Moghadasi S, Elveny M, Rahman HS, Suksatan W, Jalil AT, Abdelbasset WK, et al. A paradigm shift in cell-free approach: the emerging role of MSCs-derived exosomes in regenerative medicine. J Transl Med. 2021;19(1):1–21.

    Article  Google Scholar 

  60. Widjaja G, Jalil AT, Budi HS, Abdelbasset WK, Efendi S, Suksatan W, et al. Mesenchymal stromal/stem cells and their exosomes application in the treatment of intervertebral disc disease: A promising frontier. Int Immunopharmacol. 2022;105: 108537.

    Article  CAS  PubMed  Google Scholar 

  61. Holthof LC, van der Schans JJ, Katsarou A, Poels R, Gelderloos AT, Drent E, et al. Bone marrow mesenchymal stromal cells can render multiple myeloma cells resistant to cytotoxic machinery of CAR T cells through inhibition of apoptosis. Clin Cancer Res. 2021;27(13):3793–803.

    Article  CAS  PubMed  Google Scholar 

  62. Marofi F, Abdul-Rasheed OF, Rahman HS, Budi HS, Jalil AT, Yumashev AV, et al. CAR-NK cell in cancer immunotherapy a promising frontier. Cancer Sci. 2021;112(9):3427–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Prigione I, Benvenuto F, Bocca P, Battistini L, Uccelli A, Pistoia V. Reciprocal interactions between human mesenchymal stem cells and γδ T cells or invariant natural killer T cells. Stem Cells. 2009;27(3):693–702.

    Article  CAS  PubMed  Google Scholar 

  64. Zhao Z-G, Xu W, Sun L, You Y, Li F, Li Q-B, et al. Immunomodulatory function of regulatory dendritic cells induced by mesenchymal stem cells. Immunol Invest. 2012;41(2):183–98.

    Article  CAS  PubMed  Google Scholar 

  65. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Antony J, Tan TZ, Kelly Z, Low J, Choolani M, Recchi C, et al. The GAS6-AXL signaling network is a mesenchymal Mes molecular subtype–specific therapeutic target for ovarian cancer. Sci Signal. 2016;9(448):ra97-ra.

    Article  PubMed  Google Scholar 

  67. Akalay I, Janji B, Hasmim M, Noman MZ, André F, De Cremoux P, et al. Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell–mediated lysis. Can Res. 2013;73(8):2418–27.

    Article  CAS  Google Scholar 

  68. Ferrand N, Gnanapragasam A, Dorothee G, Redeuilh G, Larsen AK, Sabbah M. Loss of WISP2/CCN5 in estrogen-dependent MCF7 human breast cancer cells promotes a stem-like cell phenotype. PLoS ONE. 2014;9(2): e87878.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Noman MZ, Janji B, Abdou A, Hasmim M, Terry S, Tan TZ, et al. The immune checkpoint ligand PD-L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200. Oncoimmunology. 2017;6(1): e1263412.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Dongre A, Rashidian M, Reinhardt F, Bagnato A, Keckesova Z, Ploegh HL, et al. Epithelial-to-mesenchymal transition contributes to immunosuppression in breast carcinomas. Can Res. 2017;77(15):3982–9.

    Article  CAS  Google Scholar 

  71. Li X, Bu W, Meng L, Liu X, Wang S, Jiang L, et al. CXCL12/CXCR4 pathway orchestrates CSC-like properties by CAF recruited tumor associated macrophage in OSCC. Exp Cell Res. 2019;378(2):131–8.

    Article  CAS  PubMed  Google Scholar 

  72. Ghaffar S, Naqvi MA, Fayyaz A, Abid MK, Khayitov KN, Jalil AT, et al. What is the influence of grape products on liver enzymes? A systematic review and meta‐analysis of randomized controlled trials. Complement Ther Med. 2022;102845.

  73. Peng D, Tanikawa T, Li W, Zhao L, Vatan L, Szeliga W, et al. Myeloid-derived suppressor cells endow stem-like qualities to breast cancer cells through IL6/STAT3 and NO/NOTCH cross-talk signaling. Can Res. 2016;76(11):3156–65.

    Article  CAS  Google Scholar 

  74. Kuroda H, Mabuchi S, Yokoi E, Komura N, Kozasa K, Matsumoto Y, et al. Prostaglandin E2 produced by myeloid-derived suppressive cells induces cancer stem cells in uterine cervical cancer. Oncotarget. 2018;9(91):36317.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Xu Y, Dong X, Qi P, Ye Y, Shen W, Leng L, et al. Sox2 communicates with tregs through CCL1 to promote the stemness property of breast cancer cells. Stem Cells. 2017;35(12):2351–65.

    Article  CAS  PubMed  Google Scholar 

  76. Yang W, Li Y, Gao R, Xiu Z, Sun T. MHC class I dysfunction of glioma stem cells escapes from CTL-mediated immune response via activation of Wnt/β-catenin signaling pathway. Oncogene. 2020;39(5):1098–111.

    Article  CAS  PubMed  Google Scholar 

  77. Paczulla AM, Rothfelder K, Raffel S, Konantz M, Steinbacher J, Wang H, et al. Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. Nature. 2019;572(7768):254–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Venè R, Tosetti F, Minghelli S, Poggi A, Ferrari N, Benelli R. Celecoxib increases EGF signaling in colon tumor associated fibroblasts, modulating EGFR expression and degradation. Oncotarget. 2015;6(14):12310.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chupradit S, Nasution MK, Rahman HS, Suksatan W, Jalil AT, Abdelbasset W, et al. Various types of electrochemical biosensors for leukemia detection and therapeutic approaches. Analytical Biochemistry, 2022;114736.

  80. Poggi A, Musso A, Dapino I, Zocchi MR. Mechanisms of tumor escape from immune system: role of mesenchymal stromal cells. Immunol Lett. 2014;159(1–2):55–72.

    Article  CAS  PubMed  Google Scholar 

  81. Chitadze G, Lettau M, Luecke S, Wang T, Janssen O, Fürst D, et al. NKG2D-and T-cell receptor-dependent lysis of malignant glioma cell lines by human γδ T cells: modulation by temozolomide and A disintegrin and metalloproteases 10 and 17 inhibitors. Oncoimmunology. 2016;5(4): e1093276.

    Article  PubMed  Google Scholar 

  82. Musso A, Zocchi MR, Poggi A. Relevance of the mevalonate biosynthetic pathway in the regulation of bone marrow mesenchymal stromal cell-mediated effects on T-cell proliferation and B-cell survival. Haematologica. 2011;96(1):16.

    Article  CAS  PubMed  Google Scholar 

  83. Camicia R, Winkler HC, Hassa PO. Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma: a comprehensive review. Mol Cancer. 2015;14(1):1–62.

    Article  Google Scholar 

  84. Keshavarz M, Ebrahimzadeh MS, Miri SM, Dianat-Moghadam H, Ghorbanhosseini SS, Mohebbi SR, et al. Oncolytic Newcastle disease virus delivered by Mesenchymal stem cells-engineered system enhances the therapeutic effects altering tumor microenvironment. Virology J. 2020;17(1):1–13.

    Google Scholar 

  85. Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics. 2012. https://doi.org/10.1074/mcp.M111.014647.

    Article  PubMed  Google Scholar 

  86. García R, Merino D, Gómez JM, Nistal JF, Hurlé MA, Cortajarena AL, et al. Extracellular heat shock protein 90 binding to TGFβ receptor I participates in TGFβ-mediated collagen production in myocardial fibroblasts. Cell Signal. 2016;28(10):1563–79.

    Article  PubMed  Google Scholar 

  87. Kadhim MM, Sead FF, Jalil AT, Taban TZ, Rheima AM, Almashhadani HA, et al. Al-, Ga-, and In-decorated BP nanotubes as chemical sensors for 2-chloroethanol. Monatshefte für Chemie-Chemical Monthly. 2022;153(7):589–596.

    Google Scholar 

  88. Willumsen N, Thomsen LB, Bager CL, Jensen C, Karsdal MA. Quantification of altered tissue turnover in a liquid biopsy: a proposed precision medicine tool to assess chronic inflammation and desmoplasia associated with a pro-cancerous niche and response to immuno-therapeutic anti-tumor modalities. Cancer Immunol Immunother. 2018;67(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  89. Ruella M, Klichinsky M, Kenderian SS, Shestova O, Ziober A, Kraft DO, et al. Overcoming the immunosuppressive tumor microenvironment of hodgkin lymphoma using chimeric antigen receptor T cells. Cancer Discov. 2017;7(10):1154–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean M-C, Validire P, Trautmann A, et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Investig. 2012;122(3):899–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Budi HS, Davidyants A, Rudiansyah M, Ansari MJ, Suksatan W, Sultan MQ, et al. Alendronate reinforced polycaprolactone-gelatin-graphene oxide: A promising nanofibrous scaffolds with controlled drug release. Mater. Today Commun. 2022;32:104108.

    Article  CAS  Google Scholar 

  93. Powell J, Mota F, Steadman D, Soudy C, Miyauchi JT, Crosby S, et al. Small molecule neuropilin-1 antagonists combine antiangiogenic and antitumor activity with immune modulation through reduction of transforming growth factor beta (TGFβ) production in regulatory T-cells. J Med Chem. 2018;61(9):4135–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chitadze G, Lettau M, Bhat J, Wesch D, Steinle A, Fürst D, et al. Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: heterogeneous involvement of the “a disintegrin and metalloproteases” 10 and 17. Int J Can. 2013;133(7):1557–66.

    Article  CAS  Google Scholar 

  95. Farajzadeh R, Zarghami N, Serati-Nouri H, Momeni-Javid Z, Farajzadeh T, Jalilzadeh-Tabrizi S, et al. Macrophage repolarization using CD44-targeting hyaluronic acid–polylactide nanoparticles containing curcumin. Artif Cells Nanomed Biotechnol. 2018;46(8):2013–21.

    CAS  PubMed  Google Scholar 

  96. Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 2020;38(8):947–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Keshavarz M, Nejad ASM, Esghaei M, Bokharaei-Salim F, Dianat-Moghadam H, Keyvani H, et al. Oncolytic Newcastle disease virus reduces growth of cervical cancer cell by inducing apoptosis. Saudi J Biol Sci. 2020;27(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  98. Salahdin OD, Sayadi H, Solanki R, Parra RMR, Al-Thamir M, Jalil AT, et al. Graphene and carbon structures and nanomaterials for energy storage. Appl Phys A 2022;128(8):1–23.

    Article  Google Scholar 

  99. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RH, Michielin O, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2017;170(6):1109–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kim S-I, Chaurasiya S, Sivanandam V, Kang S, Park AK, Lu J, et al. Priming stroma with a vitamin D analog to optimize viroimmunotherapy for pancreatic cancer. Mol Ther Oncol. 2022;24:864–72.

    Article  CAS  Google Scholar 

  101. Gilkes DM, Bajpai S, Chaturvedi P, Wirtz D, Semenza GL. Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J Biol Chem. 2013;288(15):10819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG, et al. Macrophage expression of hypoxia-inducible factor-1α suppresses T-cell function and promotes tumor progression. Cancer Res. 2010;70(19):7465–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gunawan W, Rudiansyah M, Sultan MQ, Ansari MJ, Izzat SE, Al Jaber MS, et al. Effect of tomato consumption on inflammatory markers in health and disease status: A systematic review and meta-analysis of clinical trials. Clin Nutr ESPEN. 2022.

  104. Hasmim M, Noman MZ, Messai Y, Bordereaux D, Gros G, Baud V, et al. Cutting edge: Hypoxia-induced Nanog favors the intratumoral infiltration of regulatory T cells and macrophages via direct regulation of TGF-β1. J Immunol. 2013;191(12):5802–6.

    Article  CAS  PubMed  Google Scholar 

  105. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 2014;211(5):781–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, et al. Blockade of B7–H1 improves myeloid dendritic cell–mediated antitumor immunity. Nat Med. 2003;9(5):562–7.

    Article  CAS  PubMed  Google Scholar 

  107. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996;2(10):1096–103.

    Article  CAS  PubMed  Google Scholar 

  108. Ricciardi M, Zanotto M, Malpeli G, Bassi G, Perbellini O, Chilosi M, et al. Epithelial-to-mesenchymal transition (EMT) induced by inflammatory priming elicits mesenchymal stromal cell-like immune-modulatory properties in cancer cells. Br J Cancer. 2015;112(6):1067–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fitriyah A, Nikolenko DA, Abdelbasset WK, Maashi MS, Jalil AT, Yasin G, et al. Exposure to ambient air pollution and osteoarthritis; an animal study. Chemosphere. 2022;301:134698.

    Article  CAS  PubMed  Google Scholar 

  110. Scharping NE, Rivadeneira DB, Menk AV, Vignali PD, Ford BR, Rittenhouse NL, et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat Immunol. 2021;22(2):205–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Scharping NE, Menk AV, Whetstone RD, Zeng X, Delgoffe GM. Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol Res. 2017;5(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  112. Hatfield SM, Kjaergaard J, Lukashev D, Belikoff B, Schreiber TH, Sethumadhavan S, et al. Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-dependent and extracellular adenosine-mediated tumor protection. J Mol Med. 2014;92(12):1283–92.

    Article  CAS  PubMed  Google Scholar 

  113. Janku F, Zhang HH, Pezeshki A, Goel S, Murthy R, Wang-Gillam A, et al. Intratumoral injection of Clostridium novyi-NT spores in patients with treatment-refractory advanced solid tumors. Clin Cancer Res. 2021;27(1):96–106.

    Article  CAS  PubMed  Google Scholar 

  114. Vos JL, Elbers JB, Krijgsman O, Traets JJ, Qiao X, van der Leun AM, et al. Neoadjuvant immunotherapy with nivolumab and ipilimumab induces major pathological responses in patients with head and neck squamous cell carcinoma. Nat Commun. 2021;12(1):1–13.

    Article  Google Scholar 

  115. Sivaraman R, Patra I, Opulencia MJC, Sagban R, Sharma H, Jalil AT, Ebadi AG. Evaluating the potential of graphene-like boron nitride as a promising cathode for Mg-ion batteries. J Electroanal. Chem. 2022;116413.

  116. Chang C-H, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162(6):1229–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M, Ilkayeva O, et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J Clin Investig. 2015;125(1):194–207.

    Article  PubMed  Google Scholar 

  118. van der Windt GJ, Everts B, Chang C-H, Curtis JD, Freitas TC, Amiel E, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity. 2012;36(1):68–78.

    Article  PubMed  Google Scholar 

  119. Angelin A, Gil-de-Gómez L, Dahiya S, Jiao J, Guo L, Levine MH, et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 2017;25(6):1282-93.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mousavi Niri N, Memarnejadian A, Pilehvar-Soltanahmadi Y, Agha Sadeghi M, Mahdavi M, Kheshtchin N, et al. Improved anti-Treg vaccination targeting Foxp3 efficiently decreases regulatory T cells in mice. J Immunother. 2016;39(7):269–75.

    Article  CAS  PubMed  Google Scholar 

  121. Raya I, Danshina S, Jalil AT, Suksatan W, Mahmoud MZ, Roomi AB, et al. Catalytic filtration: efficient CC cross-coupling using Pd (II)-salen complex-embedded cellulose filter paper as a portable catalyst. RSC Adv. 2022;12(31):20156–20173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ma X, Bi E, Lu Y, Su P, Huang C, Liu L, et al. Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment. Cell Metab. 2019;30(1):143-56.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Siska PJ, Beckermann KE, Mason FM, Andrejeva G, Greenplate AR, Sendor AB, et al. Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight. 2017. https://doi.org/10.1172/jci.insight.93411.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ligtenberg MA, Mougiakakos D, Mukhopadhyay M, Witt K, Lladser A, Chmielewski M, et al. Coexpressed catalase protects chimeric antigen receptor–redirected T cells as well as bystander cells from oxidative stress–induced loss of antitumor activity. J Immunol. 2016;196(2):759–66.

    Article  CAS  PubMed  Google Scholar 

  125. Chamoto K, Chowdhury PS, Kumar A, Sonomura K, Matsuda F, Fagarasan S, et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci USA. 2017;114(5):E761–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ali M, Opulencia MJC, Chandra T, Chandra S, Muda I, Dias R, et al. An environmentally friendly solution for waste facial masks recycled in construction materials. Sustainability. 2022;14(14):8739.

    Article  CAS  Google Scholar 

  127. Vara-Ciruelos D, Dandapani M, Russell FM, Grzes KM, Atrih A, Foretz M, et al. Phenformin, but not metformin, delays development of T cell acute lymphoblastic leukemia/lymphoma via cell-autonomous AMPK activation. Cell Rep. 2019;27(3):690-8.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kim E-Y, Chung T-W, Han CW, Park SY, Park KH, Jang SB, et al. A novel lactate dehydrogenase inhibitor, 1-(phenylseleno)-4-(trifluoromethyl) benzene, suppresses tumor growth through apoptotic cell death. Sci Rep. 2019;9(1):1–12.

    Google Scholar 

  129. Dyer A, Schoeps B, Frost S, Jakeman P, Scott EM, Freedman J, et al. Antagonism of glycolysis and reductive carboxylation of glutamine potentiates activity of oncolytic adenoviruses in cancer cells. Cancer Res. 2019;79(2):331–45.

    Article  CAS  PubMed  Google Scholar 

  130. Meng G, Li B, Chen A, Zheng M, Xu T, Zhang H, et al. Targeting aerobic glycolysis by dichloroacetate improves newcastle disease virus-mediated viro-immunotherapy in hepatocellular carcinoma. Br J Cancer. 2020;122(1):111–20.

    Article  CAS  PubMed  Google Scholar 

  131. Honarvari B, Karimifard S, Akhtari N, Mehrarya M, Moghaddam ZS, Ansari MJ, et al. Folate-targeted curcumin-loaded niosomes for site-specific delivery in breast cancer treatment: In silico and In vitro study. Molecules. 2022;27(14):4634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Raines LN, Zhao H, Wang Y, Chen H-Y, Gallart-Ayala H, Hsueh P-C, et al. PERK is a critical metabolic hub for immunosuppressive function in macrophages. Nat Immunol. 2022;23(3):431–45.

    Article  CAS  PubMed  Google Scholar 

  133. Lo A, Wang L-CS, Scholler J, Monslow J, Avery D, Newick K, et al. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Res. 2015;75(14):2800–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Qian L, Tang Z, Yin S, Mo F, Yang X, Hou X, et al. Fusion of dendritic cells and cancer-associated fibroblasts for activation of anti-tumor cytotoxic T lymphocytes. J Biomed Nanotechnol. 2018;14(10):1826–35.

    Article  PubMed  Google Scholar 

  135. Comito G, Segura CP, Taddei ML, Lanciotti M, Serni S, Morandi A, et al. Zoledronic acid impairs stromal reactivity by inhibiting M2-macrophages polarization and prostate cancer-associated fibroblasts. Oncotarget. 2017;8(1):118.

    Article  PubMed  Google Scholar 

  136. Jasim SA, Hachem K, Abed Hussein S, Turki Jalil A, Hameed NM, Dehno Khalaji, A. New chitosan modified with epichlohydrin and bidentate Schiff base applied to removal of Pb2+ and Cd2+ ions. J Chin Chem Soc 2022;69(7):1051–1059.

    Article  CAS  Google Scholar 

  137. Xu C, Lin L, Cao G, Chen Q, Shou P, Huang Y, et al. Interferon-α-secreting mesenchymal stem cells exert potent antitumor effect in vivo. Oncogene. 2014;33(42):5047–52.

    Article  CAS  PubMed  Google Scholar 

  138. Chinnadurai R, Copland IB, Patel SR, Galipeau J. IDO-independent suppression of T cell effector function by IFN-γ–licensed human mesenchymal stromal cells. J Immunol. 2014;192(4):1491–501.

    Article  CAS  PubMed  Google Scholar 

  139. Musso A, Catellani S, Canevali P, Tavella S, Venè R, Boero S, et al. Aminobisphosphonates prevent the inhibitory effects exerted by lymph node stromal cells on anti-tumor Vδ 2 T lymphocytes in non-Hodgkin lymphomas. Haematologica. 2014;99(1):131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zocchi MR, Catellani S, Canevali P, Tavella S, Garuti A, Villaggio B, et al. High ERp5/ADAM10 expression in lymph node microenvironment and impaired NKG2D ligands recognition in hodgkin lymphomas. Blood J Am Soc Hematol. 2012;119(6):1479–89.

    CAS  Google Scholar 

  141. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–8.

    Article  CAS  PubMed  Google Scholar 

  142. Xu Y, Al-Mualm M, Terefe EM, Shamsutdinova MI, Opulencia MJC, Alsaikhan F, et al. Prediction of COVID-19 manipulation by selective ACE inhibitory compounds of Potentilla reptant root: In silico study and ADMET profile. Arab J Chem. 2022;15(7):103942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Singha NC, Nekoroski T, Zhao C, Symons R, Jiang P, Frost GI, et al. Tumor-associated hyaluronan limits efficacy of monoclonal antibody therapy. Mol Cancer Ther. 2015;14(2):523–32.

    Article  CAS  PubMed  Google Scholar 

  144. Hatfield SM, Kjaergaard J, Lukashev D, Schreiber TH, Belikoff B, Abbott R, et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med. 2015;7(277):277ra30-ra30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jayaprakash P, Ai M, Liu A, Budhani P, Bartkowiak T, Sheng J, et al. Targeted hypoxia reduction restores T cell infiltration and sensitizes prostate cancer to immunotherapy. J Clin Investig. 2018;128(11):5137–49.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Sun X, Kanwar JR, Leung E, Lehnert K, Wang D, Krissansen G. Gene transfer of antisense hypoxia inducible factor-1 α enhances the therapeutic efficacy of cancer immunotherapy. Gene Ther. 2001;8(8):638–45.

    Article  CAS  PubMed  Google Scholar 

  147. Jasim SA., Abdelbasset WK, Shichiyakh RA, Al‐Shawi SG, Yasin G, Jalil AT et al. Probiotic effects of the fungi, Aspergillus niger on growth, immunity, haematology, intestine fungal load and digestive enzymes of the common carp, Cyprinus carpio. Aquac Res. 2022.

  148. Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, Russell S, Weber AM, Luddy K, et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 2016;76(6):1381–90.

    Article  CAS  PubMed  Google Scholar 

  149. Cha J-H, Yang W-H, Xia W, Wei Y, Chan L-C, Lim S-O, et al. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol Cell. 2018;71(4):606-20.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wu Z, Hu H, Zhang J, Cai Y, Xie X, Ling J, et al. PD-1 blockade combined with COX inhibitor in patients with MSI-H/dMMR or high TMB advanced or metastatic colorectal cancer (PCOX study). Am Soc Clin Oncol. 2020. https://doi.org/10.1200/JCO.2020.38.4_suppl.111.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.

Funding

Self-funded by the authors.

Author information

Authors and Affiliations

Authors

Contributions

JAF: Conceptualization, Investigation, Writing—original draft. AJA, SEDM, IKK, NMJ, and WJA: Investigation, Writing—original draft. ATJ: Writing—review & editing, Visualization, Supervision, and Project administration. All co-authors approved the final version of the manuscript.

Corresponding author

Correspondence to Abduladheem Turki Jalil.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraj, J.A., Al-Athari, A.H., Mohie, S.E.D. et al. Reprogramming the tumor microenvironment to improve the efficacy of cancer immunotherapies. Med Oncol 39, 239 (2022). https://doi.org/10.1007/s12032-022-01842-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01842-5

Keywords