Skip to main content

Advertisement

Log in

The challenge of selecting tumor antigens for chimeric antigen receptor T-cell therapy in ovarian cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Ovarian cancer (OC) is one of the most common cancers in women, with a high mortality rate and very few available and effective treatments. Evidence shows that immunotherapy in OC has not been very successful because immune checkpoint blockers have not achieved satisfactory clinical outcomes. On the other hand, as one of the effective treatment approaches, chimeric antigen receptor T-cell (CAR T-cell) therapy has gained a moral position, especially in blood malignancies. Although in solid tumors, CAR T-cell therapy faces various complications and challenges. One of these challenges is selecting the appropriate tumor antigen targeted by CAR T cells, making the selection difficult due to the expression of antigens by tumor cells and normal cells. In addition, the rate of tumor antigen expression and CAR T-cell access to the desired antigen and proper stimulation of CAR T cells can be other important points in antigen selection. This review summarized common tumor antigens and the challenges of selecting them in CAR T cells therapy of OC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Ovarian cancer statistics. [cited 2021 7.1.2021]; Available from: https://www.wcrf.org/dietandcancer/ovarian-cancer-statistics/.

  2. Yan W, Hu H, Tang B. Advances of chimeric antigen receptor T cell therapy in ovarian cancer. Onco Targets Ther. 2019;12:8015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer. Best Pract Res Clin Obstet Gynaecol. 2017;41:3–14.

    Article  PubMed  Google Scholar 

  4. Ovarian Cancer Stages. [cited 2021 1.7.2021]; Available from: https://www.cancer.org/cancer/ovarian-cancer/detection-diagnosis-staging/staging.html.

  5. Bookman M. Standard treatment in advanced ovarian cancer in 2005: the state of the art. Int J Gynecol Cancer. 2005;15:Suppl 3.

    Article  Google Scholar 

  6. Tewari KS, et al. Final overall survival of a randomized trial of bevacizumab for primary treatment of ovarian cancer. J Clin Oncol. 2019;37(26):2317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Natoli M, et al. Human ovarian cancer intrinsic mechanisms regulate lymphocyte activation in response to immune checkpoint blockade. Cancer Immunol Immunother. 2020;69(8):1391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Met, Ö., et al. (2019) Principles of adoptive T cell therapy in cancer. in Seminars in immunopathology. Springer.

  9. Mohanty R, et al. CAR T cell therapy: a new era for cancer treatment. Oncol Rep. 2019;42(6):2183–95.

    CAS  PubMed  Google Scholar 

  10. June CH, et al. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361–5.

    Article  CAS  PubMed  Google Scholar 

  11. Marofi F, et al. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res Ther. 2021;12(1):1–16.

    Article  Google Scholar 

  12. Chekmasova AA, Brentjens RJ. Adoptive T cell immunotherapy strategies for the treatment of patients with ovarian cancer. Discov Med. 2010;9(44):62–70.

    PubMed  Google Scholar 

  13. Tanyi JL, et al. Possible compartmental cytokine release syndrome in a patient with recurrent ovarian cancer after treatment with mesothelin-targeted CAR-T cells. J Immunother. 2017;40(3):104–7.

    Article  CAS  PubMed  Google Scholar 

  14. Zhu X, et al. CAR-T cell therapy in ovarian cancer: from the bench to the bedside. Oncotarget. 2017;8(38):64607.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Roselli E, Faramand R, Davila ML. Insight into next-generation CAR therapeutics: designing CAR T cells to improve clinical outcomes. J Clin Invest. 2021;131:2.

    Article  Google Scholar 

  16. Zhang C, et al. Engineering car-t cells. Biomark Res. 2017;5(1):1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Styczyński J. A brief history of CAR-T cells: from laboratory to the bedside. Acta Haematol Pol. 2020;51(1):2–5.

    Article  Google Scholar 

  18. Quintás-Cardama A. What CAR will win the CD19 race? Mol Cancer Ther. 2019;18(3):498–506.

    Article  PubMed  Google Scholar 

  19. Mariuzza RA, Agnihotri P, Orban J. The structural basis of T-cell receptor (TCR) activation: an enduring enigma. J Biol Chem. 2020;295(4):914–25.

    Article  PubMed  Google Scholar 

  20. June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379(1):64–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Silbert S, Yanik GA, Shuman AG. How should we determine the value of CAR T-cell therapy? AMA J Ethics. 2019;21(10):844–51.

    Article  Google Scholar 

  22. Levine BL, et al. Global manufacturing of CAR T cell therapy. Mol Therapy-Methods Clin Develop. 2017;4:92–101.

    Article  CAS  Google Scholar 

  23. Turtle CJ, et al. CD19 CAR–T cells of defined CD4+: CD8+ composition in adult B cell ALL patients. J Clin Investig. 2016;126(6):2123–38.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brudno JN, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol. 2018;15(1):31.

    Article  CAS  PubMed  Google Scholar 

  25. Siddiqi HF, Staser KW, Nambudiri VE. Research techniques made simple: CAR T-cell therapy. J Invest Dermatol. 2018;138(12):2501–4.

    Article  CAS  PubMed  Google Scholar 

  26. Kim DW, Cho J-Y. Recent advances in allogeneic CAR-T cells. Biomolecules. 2020;10(2):263.

    Article  CAS  PubMed Central  Google Scholar 

  27. Luangwattananun P, et al. Fourth-generation chimeric antigen receptor T cells targeting folate receptor alpha antigen expressed on breast cancer cells for adoptive T cell therapy. Breast Cancer Res Treat. 2021;186(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  28. Yeku OO, Brentjens RJ. Armored CAR T-cells: utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochem Soc Trans. 2016;44(2):412–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen H, et al. CD27 enhances the killing effect of CAR T cells targeting trophoblast cell surface antigen 2 in the treatment of solid tumors. Cancer Immunol Immunother. 2021;70(7):2059–71.

    Article  CAS  PubMed  Google Scholar 

  30. Chacon JA, et al. Co-stimulation through 4–1BB/CD137 improves the expansion and function of CD8+ melanoma tumor-infiltrating lymphocytes for adoptive T-cell therapy. PLoS ONE. 2013;8(4): e60031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zuccolotto G, et al. PSMA-specific car-engineered T cells for prostate cancer: CD28 outperforms combined CD28–41BB “Super-stimulation”. Front. Oncol. 2021.

  32. Song D-G, Powell DJ. Pro-survival signaling via CD27 costimulation drives effective CAR T-cell therapy. Oncoimmunology. 2012;1(4):547–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schubert M-L, et al. Third-generation CAR T cells targeting CD19 are associated with an excellent safety profile and might improve persistence of CAR T cells in treated patients. DC: American Society of Hematology Washington; 2019.

    Book  Google Scholar 

  34. Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther. 2015;15(8):1145–54.

    Article  CAS  PubMed  Google Scholar 

  35. Tokarew N, et al. Teaching an old dog new tricks: next-generation CAR T cells. Br J Cancer. 2019;120(1):26–37.

    Article  CAS  PubMed  Google Scholar 

  36. Siroy A, et al. MUC1 is expressed at high frequency in early-stage basal-like triple-negative breast cancer. Hum Pathol. 2013;44(10):2159–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maeda T, et al. MUC1-C induces PD-L1 and immune evasion in triple-negative breast cancer. Can Res. 2018;78(1):205–15.

    Article  CAS  Google Scholar 

  38. Zhou R, et al. CAR T cells targeting the tumor MUC1 glycoprotein reduce triple-negative breast cancer growth. Front Immunol. 2019;10:1149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aghili M, et al. Triple-negative breast cancer survival in Iranian patients. Acta Medica Iranica. 2013;560–566.

  40. Zuo B-L, et al. Targeting and suppression of HER3-positive breast cancer by T lymphocytes expressing a heregulin chimeric antigen receptor. Cancer Immunol Immunother. 2018;67(3):393–401.

    Article  PubMed  Google Scholar 

  41. Lamers CH, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther. 2013;21(4):904–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lamers CH, et al. Treatment of metastatic renal cell carcinoma (mRCC) with CAIX CAR-engineered T-cells–a completed study overview. Biochem Soc Trans. 2016;44(3):951–9.

    Article  CAS  PubMed  Google Scholar 

  43. Jiang H, et al. Claudin18. 2-specific chimeric antigen receptor engineered T cells for the treatment of gastric cancer. JNCI J Nat Cancer Instit. 2019;111(4):409–18.

    Article  Google Scholar 

  44. Tao K, et al. Development of NKG2D-based chimeric antigen receptor-T cells for gastric cancer treatment. Cancer Chemother Pharmacol. 2018;82(5):815–27.

    Article  CAS  PubMed  Google Scholar 

  45. Song Y, et al. Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo. Protein Cell. 2018;9(10):867–78.

    Article  CAS  PubMed  Google Scholar 

  46. Jung M, et al. Chimeric antigen receptor T cell therapy targeting ICAM-1 in gastric cancer. Molecular Therapy-Oncolytics. 2020;18:587–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen X, et al. Combined DLL3-targeted bispecific antibody with PD-1 inhibition is efficient to suppress small cell lung cancer growth. J Immunotherapy Cancer. 2020;8:1.

    Article  Google Scholar 

  48. Hillerdal V, Essand M. Chimeric antigen receptor-engineered T cells for the treatment of metastatic prostate cancer. BioDrugs. 2015;29(2):75–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Weimin S, et al. Chimeric cytokine receptor enhancing PSMA-CAR-T cell-mediated prostate cancer regression. Cancer Biol Ther. 2020;21(6):570–80.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Junghans RP, et al. Phase I trial of anti-PSMA designer CAR-T cells in prostate cancer: possible role for interacting interleukin 2-T cell pharmacodynamics as a determinant of clinical response. Prostate. 2016;76(14):1257–70.

    Article  CAS  PubMed  Google Scholar 

  51. Slovin SF, et al. Chimeric antigen receptor (CAR+) modified T cells targeting prostate specific membrane antigen (PSMA) in patients (pts) with castrate metastatic prostate cancer (CMPC). Am Soc Clin Oncol. 2013.

  52. Batra SA, et al. Glypican-3–specific CAR T cells coexpressing IL15 and IL21 have superior expansion and antitumor activity against hepatocellular carcinoma. Cancer Immunol Res. 2020;8(3):309–20.

    Article  CAS  PubMed  Google Scholar 

  53. Jin L, et al. CXCR1-or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nat Commun. 2019;10(1):1–13.

    Article  Google Scholar 

  54. Zhang Y, et al. Novel cellular immunotherapy using NKG2D CAR-T for the treatment of cervical cancer. Biomed Pharmacother. 2020;131: 110562.

    Article  CAS  PubMed  Google Scholar 

  55. Murad JP, et al. Effective targeting of TAG72+ peritoneal ovarian tumors via regional delivery of CAR-engineered T cells. Front Immunol. 2018;9:2268.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chekmasova AA, et al. Successful eradication of established peritoneal ovarian tumors in SCID-Beige mice following adoptive transfer of T cells genetically targeted to the MUC16 antigen. Clin Cancer Res. 2010;16(14):3594–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yeku OO, et al. Interleukin-12 armored chimeric antigen receptor (CAR) T cells for heterogeneous antigen-expressing ovarian cancer. Am Soc Clin Oncol. 2018.

  58. Hung C-F, et al. Development of anti-human mesothelin-targeted chimeric antigen receptor messenger RNA–transfected peripheral blood lymphocytes for ovarian cancer therapy. Hum Gene Ther. 2018;29(5):614–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu Y, Low PS. Immunotherapy of folate receptor-expressing tumors: review of recent advances and future prospects. J Control Release. 2003;91(1–2):17–29.

    Article  CAS  PubMed  Google Scholar 

  60. Zuo S, et al. Modification of cytokine-induced killer cells with folate receptor alpha (FRα)-specific chimeric antigen receptors enhances their antitumor immunity toward FRα-positive ovarian cancers. Mol Immunol. 2017;85:293–304.

    Article  CAS  PubMed  Google Scholar 

  61. Song D-G, et al. Chimeric NKG2D CAR-expressing T cell-mediated attack of human ovarian cancer is enhanced by histone deacetylase inhibition. Hum Gene Ther. 2013;24(3):295–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rodriguez-Garcia A, et al. CAR T cells targeting MISIIR for the treatment of ovarian cancer and other gynecologic malignancies. Mol Ther. 2020;28(2):548–60.

    Article  CAS  PubMed  Google Scholar 

  63. Fu J, et al. Chimeric Antigen receptor-T (CAR-T) cells targeting Epithelial cell adhesion molecule (EpCAM) can inhibit tumor growth in ovarian cancer mouse model. J Veter Med Sci. 2020;20–0455.

  64. Wrigley E, et al. 5T4 oncofetal antigen expression in ovarian carcinoma. Int J Gynecol Cancer. 1995;5:4.

    Article  Google Scholar 

  65. Owens GL, et al. Preclinical assessment of CAR T-cell therapy targeting the tumor antigen 5T4 in ovarian cancer. J Immun (Hagerstown, Md: 1997). 2018;41(3):130.

    CAS  Google Scholar 

  66. Li T, Wang J. Therapeutic effect of dual CAR-T targeting PDL1 and MUC16 antigens on ovarian cancer cells in mice. BMC Cancer. 2020;20(1):1–13.

    Article  Google Scholar 

  67. Shu R, et al. Engineered CAR-T cells targeting TAG-72 and CD47 in ovarian cancer. Mol Therapy-Oncol. 2021;20:325–41.

    Article  CAS  Google Scholar 

  68. Jiang G, et al. Dual CAR-T cells to treat cancers co-expressing NKG2D and PD1 ligands in xenograft models of peritoneal metastasis. Cancer Immunol Immunotherapy. 2022;1–12.

  69. Wang W, et al. LGR5 CAR-T cells: a novel potential treatment against high grade serous ovarian cancer. Can Res. 2022;82(12_Supplement):5183–5183.

    Article  Google Scholar 

  70. Schepisi G, et al. Immunotherapy and its development for gynecological (ovarian, endometrial and cervical) tumors: from immune checkpoint inhibitors to chimeric antigen receptor (CAR)-T cell therapy. Cancers. 2021;13(4):840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. CAR T cell receptor immunotherapy targeting mesothelin for patients with metastatic cancer. 2021 [cited 2021 7.7.2021]; Available from: https://clinicaltrials.gov/ct2/show/NCT01583686.

  72. Herbel C, et al. Identification of a novel tumor marker combination THY1-EPCAM for adaptor CAR T cell therapy in ovarian cancer. Cancer Res. 2022;82(12_Supplement):2813–2813.

    Article  Google Scholar 

  73. Rao TD, et al. Novel monoclonal antibodies against the proximal (carboxy-terminal) portions of MUC16. Appl Immunohistochem Mol Morphol: AIMM/Off Publ Soc Appl Immunohistochem. 2010;18(5):462.

    Article  Google Scholar 

  74. Kollmorgen G, et al. A re-engineered immunotoxin shows promising preclinical activity in ovarian cancer. Sci Rep. 2017;7(1):1–13.

    Article  CAS  Google Scholar 

  75. Hassan R, et al. Mesothelin is overexpressed in pancreaticobiliary adenocarcinomas but not in normal pancreas and chronic pancreatitis. Am J Clin Pathol. 2005;124(6):838–45.

    Article  CAS  PubMed  Google Scholar 

  76. Pastan I, Hassan R. Discovery of mesothelin and exploiting it as a target for immunotherapy. Can Res. 2014;74(11):2907–12.

    Article  CAS  Google Scholar 

  77. Li X, et al. PLAP-CAR T cells mediate high specific cytotoxicity against colon cancer cells. Front Biosci (Landmark Ed). 2020;25:1765–86.

    Article  CAS  Google Scholar 

  78. Golubovskaya VM, et al. PLAP (placental alkaline phosphatase)-CAR-T cells specifically target colorectal cancer. Cancer Res. 2020;80:16.

    Article  Google Scholar 

  79. Zhan X, et al. Phase I trial of Claudin 18.2-specific chimeric antigen receptor T cells for advanced gastric and pancreatic adenocarcinoma. Am Soc Clin Oncol. 2019.

  80. Reinhard K, et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science. 2020;367(6476):446–53.

    Article  CAS  PubMed  Google Scholar 

  81. Levitsky K, et al. Allogeneic anti-PTK7 CAR-T cells for the treatment of solid tumors. Cancer Res. 2020;80:16.

    Article  Google Scholar 

  82. Sachdev J, et al. A phase 1 study of PF-06647020, an antibody-drug conjugate (ADC) targeting protein tyrosine kinase 7 (PTK7), in patients with advanced solid tumors including platinum resistant ovarian cancer (OVCA). Ann Oncol. 2017;27:vi570.

    Article  Google Scholar 

  83. Kershaw MH, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res. 2006;12(20):6106–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Song D-G, et al. In vivo persistence, tumor localization, and antitumor activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (4–1BB). Can Res. 2011;71(13):4617–27.

    Article  CAS  Google Scholar 

  85. Delaine-Smith RM, et al. Modelling TGFβR and Hh pathway regulation of prognostic matrisome molecules in ovarian cancer. Iscience. 2021;24(6): 102674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Joy JD, et al. TGFβ-mediated targeting of the extracellular matrix enhances the migration and cytotoxicity of CAR-T cells in 3D models of ovarian cancer. Cancer Res. 2022;82(12_Supplement):693–693.

    Article  Google Scholar 

Download references

Acknowledgements

None.

Funding

This work was supported by Public Technology Applied Research Projects of Zhejiang Province (LGF22H060023 to WQL), Medical and Health Research Project of Zhejiang Province (2022KY433 to WQL), Traditional Chinese Medicine Science and Technology Projects of Zhejiang Province (2022ZB382 to WQL), Research Fund Projects of The Affiliated Hospital of Zhejiang Chinese Medicine University (2021FSYYZY45 to WQL).

Author information

Authors and Affiliations

Authors

Contributions

W L and Q L: conception, design and inviting co-authors to participate. H D, J Z and F Z: writing original manuscript draft. W L, Q L, Y X and Y Y: review and editing of manuscript critically for important intellectual content and provided comments and feedback for the scientific contents of the manuscript. All authors read, revised and approved the final manuscript.

Corresponding authors

Correspondence to Wenqing Liang or Qingping Li.

Ethics declarations

Conflict of interests

All authors of this article declare that they have no conflict of interest.

Ethical approval

This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Zhang, J., Zhang, F. et al. The challenge of selecting tumor antigens for chimeric antigen receptor T-cell therapy in ovarian cancer. Med Oncol 39, 232 (2022). https://doi.org/10.1007/s12032-022-01824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01824-7

Keywords