Skip to main content

Advertisement

Log in

Molecular perspective on targeted therapy in breast cancer: a review of current status

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Breast cancer is categorized at the molecular level according to the status of certain hormone and growth factor receptors, and this classification forms the basis of current diagnosis and treatment. The development of resistance to treatment and recurrence of the disease have led researchers to develop new therapies. In recent years, most of the research in the field of oncology has focused on the development of targeted therapies, which are treatment methods developed directly against molecular abnormalities. Promising advances have been made in clinical trials investigating the effect of these new treatment modalities and their combinations with existing therapeutic treatments in the treatment of breast cancer. Monoclonal antibodies, tyrosine kinase inhibitors, antibody–drug conjugates, PI3K/Akt/mTOR pathway inhibitors, cyclin-dependent kinase 4/6 inhibitors, anti-angiogenic drugs, PARP inhibitors are among the targeted therapies used in breast cancer treatment. In this review, we aim to present a molecular view of recently approved target agents used in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. American Cancer Society. Breast cancer Facts & Figures 2019–2020. 2019. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/breast-cancer-facts-and figures/breast-cancer-facts-and-figures-2019–2020.pdf. Accessed 1 Feb 2022.

  2. Medina MA, Oza G, Sharma A, Arriaga LG, Hernández Hernández JM, Rotello VM, et al. Triple-negative breast cancer: a review of conventional and advanced therapeutic strategies. Int J Environ Res Public Health. 2020. https://doi.org/10.3390/ijerph17062078.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pashayan N, Antoniou AC, Ivanus U, Esserman LJ, Easton DF, French D, et al. Personalized early detection and prevention of breast cancer: ENVISION consensus statement. Nat Rev Clin Oncol. 2020. https://doi.org/10.1038/s41571-020-0388-9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dong J, Esham KS, Boehm L, Karim SA, Lin M, Mao D, et al. Timeliness of treatment initiation in newly diagnosed patients with breast cancer. Clin Breast Cancer. 2020. https://doi.org/10.1016/j.clbc.2019.06.009.

    Article  PubMed  Google Scholar 

  5. He Z, Chen Z, Tan M, Elingarami S, Liu Y, Li T, et al. A review on methods for diagnosis of breast cancer cells and tissues. Cell Prolif. 2020. https://doi.org/10.1111/cpr.12822.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Masoud V, Pagès G. Targeted therapies in breast cancer: New challenges to fight against resistance. World J Clini Oncol. 2017. https://doi.org/10.5306/wjco.v8.i2.120.

    Article  Google Scholar 

  7. Goutsouliak K, Veeraraghavan J, Sethunath V, de Angelis C, Osborne CK, Rimawi MF, et al. Towards personalized treatment for early stage HER2-positive breast cancer. Nat Rev Clin Oncol. 2020;17(4):233–50.

    Article  Google Scholar 

  8. Mignot F, Ajgal Z, Xu H, Geraud A, Chen JY, Mégnin-Chanet F, et al. Concurrent administration of anti-HER2 therapy and radiotherapy: Systematic review. Radiother Oncol. 2017. https://doi.org/10.1016/j.radonc.2017.07.006.

    Article  PubMed  Google Scholar 

  9. Gao JJ, Osgood CL, Gong Y, Zhang H, Bloomquist EW, Jiang X, et al. FDA approval summary: pertuzumab, trastuzumab, and hyaluronidase–zzxf injection for subcutaneous use in patients with HER2-positive breast cancer. Clin Cancer Res. 2021. https://doi.org/10.1158/1078-0432.CCR-20-3474.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Esteva FJ, Hubbard-Lucey VM, Tang J, Pusztai L. Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol. 2019. https://doi.org/10.1016/S1470-2045(19)30026-9.

    Article  PubMed  Google Scholar 

  11. Denegri A, Moccetti T, Mocetti M, Spallarossa P, Brunelli C, Ameri P. Cardiac toxicity of trastuzumab in elderly patients with breast cancer. J Geriatric Cardiol. 2016;13(4):355.

    CAS  Google Scholar 

  12. Singh H, Walker AJ, Amiri-Kordestani L, Cheng J, Tand S, Balcazar P, et al. US food and drug administration approval: neratinib for the extended adjuvant treatment of early-stage HER2-positive breast cancer. Clin Cancer Res. 2018;24(15):3486–91.

    Article  CAS  Google Scholar 

  13. Ajgal Z, De Percin S, Diéras V, Pierga JY, Campana F, Fourquet A, et al. Combination of radiotherapy and double blockade HER2 with pertuzumab and trastuzumab for HER2-positive metastatic or locally recurrent unresectable and/or metastatic breast cancer: assessment of early toxicity. Cancer/Radiothérapie. 2017;21(2):114–8.

    Article  CAS  Google Scholar 

  14. Ben Dhia S, Loap P, Loirat D, Vincent-Salomon A, Cao K, Escalup L, et al. Concurrent radiation therapy and dual HER2 blockade in breast cancer: assessment of toxicity. Cancer Radiotherapie. 2021;25(5):424–31.

    Article  CAS  Google Scholar 

  15. Markham A. Margetuximab: first approval. Drugs. 2021;81:599–604.

    Article  CAS  Google Scholar 

  16. Royce M, Osgood CL, Amatya AK, Fierro MH, George Chang CJ, Ricks TK, et al. FDA approval summary: margetuximab plus chemotherapy for advanced or metastatic HER2-positive breast cancer. Clin Cancer Res. 2022;28(8):1487–92.

    Article  CAS  Google Scholar 

  17. Rugo HS, Im SA, Cardoso F, Cortés J, Curigliano G, Musolino A, et al. Efficacy of margetuximab vs trastuzumab in patients with pretreated ERBB2-positive advanced breast cancer A phase 3 randomized clinical trial. JAMA Oncol. 2021;7(4):573–84.

    Article  Google Scholar 

  18. MacroGenics. MARGENZA (margetuximab-cmkb): highlights of prescribing information. 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761150s000lbl.pdf. Accessed 9 May 2022.

  19. Nielsen DL, Andersson M, Kamby C. HER2-targeted therapy in breast cancer: monoclonal antibodies and tyrosine kinase inhibitors. Cancer Treat Rev. 2009. https://doi.org/10.1016/j.ctrv.2008.09.003.

    Article  PubMed  Google Scholar 

  20. Wahdan-Alaswad R, Liu B, Thor AD. Targeted lapatinib anti-HER2/ErbB2 therapy resistance in breast cancer: opportunities to overcome a difficult problem. Cancer Drug Resistance. 2020;3(2):179–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bilancia D, Rosati G, Dinota A, Germano D, Romano R, Manzione L. Lapatinib in breast cancer. Ann Oncol. 2007. https://doi.org/10.1093/annonc/mdm220.

    Article  PubMed  Google Scholar 

  22. Moy B, Goss PE. Lapatinib: current status and future directions in breast cancer. Oncologist. 2006. https://doi.org/10.1634/theoncologist.11-10-1047.

    Article  PubMed  Google Scholar 

  23. Moy B, Kirkpatrick P, Kar S, Goss P. Lapatinib. Nat Rev Drug Discovery. 2007;6(6):431–2.

    Article  CAS  Google Scholar 

  24. Moy B, Goss PE. Lapatinib-associated toxicity and practical management recommendations. Oncologist. 2007;12(7):756–65.

    Article  CAS  Google Scholar 

  25. Chan A, Delaloge S, Holmes FA, Moy B, Iwata H, Harvey VJ, et al. Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016. https://doi.org/10.1016/S1470-2045(15)00551-3.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Feldinger K, Kong A. Profile of neratinib and its potential in the treatment of breast cancer. Breast Cancer. 2015. https://doi.org/10.2147/BCTT.S54414.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Paranjpe R, Basatneh D, Tao G, De Angelis C, Noormohammed S, Ekinci E, et al. Neratinib in HER2-positive breast cancer patients. Ann Pharmacother. 2019. https://doi.org/10.1177/1060028018824088.

    Article  PubMed  Google Scholar 

  28. Wong KK, Fracasso PM, Bukowski RM, Lynch TJ, Munster PN, Shapiro GI, et al. A phase I study with neratinib (HKI-272), an irreversible pan ErbB receptor tyrosine kinase inhibitor, in patients with solid tumors. Clin Cancer Res. 2009;15(7):2552–8.

    Article  CAS  Google Scholar 

  29. Gampenrieder SP, Castagnaviz V, Rinnerthaler G, Greil R. Treatment landscape for patients with HER2-positive metastatic breast cancer: a review on emerging treatment options. Cancer Manage Res. 2020. https://doi.org/10.2147/CMAR.S235121.

    Article  Google Scholar 

  30. Chen Q, Ouyang D, Anwar M, Xie N, Wang S, Fan P, et al. Effectiveness and safety of pyrotinib, and association of biomarker With progression-free survival in patients with HER2-positive metastatic breast cancer: a real-world. Multicentre Analysis Front Oncol. 2020. https://doi.org/10.3389/fonc.2020.00811.

    Article  PubMed  Google Scholar 

  31. Blair HA. Pyrotinib: first global approval. Drugs. 2018;78(16):1751–5.

    Article  Google Scholar 

  32. Huang T, Luo X, Wu B, Peng P, Dai Y, Hu G, et al. Pyrotinib enhances the radiosensitivity of HER2-overexpressing gastric and breast cancer cells. Oncol Rep. 2020. https://doi.org/10.3892/or.2020.7820.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Perachino M, Arecco L, Martelli V, Lambertini M. Pyrotinib: a new promising targeted agent for human epidermal growth factor receptor 2-positive breast cancer. Transl Breast Cancer Res. 2020;1:11.

    Article  Google Scholar 

  34. Murthy RK, Loi S, Okines A, Paplomata E, Hamilton E, Hurvitz SA, et al. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N Engl J Med. 2020. https://doi.org/10.1056/nejmoa1914609.

    Article  PubMed  Google Scholar 

  35. Shah M, Wedam S, Cheng J, Fiero MH, Xia H, Li F, et al. FDA Approval summary: tucatinib for the treatment of patients with advanced or metastatic HER2-positive breast cancer. Clin Cancer Res. 2021;27(5):1220–6.

    Article  CAS  Google Scholar 

  36. Lee A. Tucatinib: first approval. Drug. 2020. https://doi.org/10.1007/s40265-020-01340-w.

    Article  Google Scholar 

  37. Yu J, Fang T, Yun C, Liu X, Cai X. Antibody-drug conjugates targeting the human epidermal growth factor receptor family in cancers. Front Mol Biosci. 2022. https://doi.org/10.3389/fmolb.2022.847835.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Corrigan PA, Cicci TA, Auten JJ, Lowe DK. Ado-trastuzumab Emtansine. Ann Pharmacother. 2014;48(11):1484–93. https://doi.org/10.1177/1060028014545354.

    Article  CAS  PubMed  Google Scholar 

  39. Barok M, Joensuu H, Isola J. Trastuzumab emtansine: mechanisms of action and drug resistance. Breast Cancer Res. 2014;16(2):1–12.

    Article  Google Scholar 

  40. Montemurro F, Ellis P, Anton A, Wuerstlein R, Delaloge S, Bonneterre J, et al. Safety of trastuzumab emtansine (T-DM1) in patients with HER2-positive advanced breast cancer: Primary results from the KAMILLA study cohort 1*. Eur J Cancer. 2019;109:92–102.

    Article  CAS  Google Scholar 

  41. Xu Z, Guo D, Jiang Z, Tong R, Jiang P, Bai L, et al. Novel HER2- targeting antibody-drug conjugates of trastuzumab beyond T-DM1 in breast cancer: trastuzumab deruxtecan (DS-8201a) and (Vic-) trastuzumab duocarmazine (SYD985). Eur J Med Chem. 2019;183:111682. https://doi.org/10.1016/j.ejmech.2019.111682.

    Article  CAS  PubMed  Google Scholar 

  42. Modi S, Saura C, Yamashita T, Park YH, Kim SB, Tamura K, et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med. 2020;382(7):610–21.

    Article  CAS  Google Scholar 

  43. Aalders KC, Tryfonidis K, Senkus E, Cardoso F. Anti-angiogenic treatment in breast cancer: facts, successes, failures and future perspectives. Cancer Treat Rev. 2017. https://doi.org/10.1016/j.ctrv.2016.12.009.

    Article  PubMed  Google Scholar 

  44. Zirlik K, Duyster J. Anti-Angiogenics: Current Situation and Future Perspectives. Oncology Research Treatment. 2018;41(4):166–71.

    Article  CAS  Google Scholar 

  45. Banerjee S, Dowsett M, Ashworth A, Martin LA. Mechanisms of disease: angiogenesis and the management of breast cancer. Nat Clin Pract Oncol. 2007. https://doi.org/10.1038/ncponc0905.

    Article  PubMed  Google Scholar 

  46. Miyashita M, Hattori M, Takano T, Toyama T, Iwata H. Risks and benefits of bevacizumab combined with chemotherapy for advanced or metastatic breast cancer: a meta-analysis of randomized controlled trials. Breast Cancer. 2020. https://doi.org/10.1007/s12282-020-01052-9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ueda S, Saeki T, Osaki A, Yamane T, Kuji I. Bevacizumab induces acute hypoxia and cancer progression in patients with refractory breast cancer: multimodal functional imaging and multiplex cytokine analysis. Clin Cancer Res. 2017;23(19):5769–78.

    Article  CAS  Google Scholar 

  48. Krüger K, Silwal-Pandit L, Wik E, Straume O, Stefansson IM, Borgen E, et al. Baseline microvessel density predicts response to neoadjuvant bevacizumab treatment of locally advanced breast cancer. Sci Rep. 2021. https://doi.org/10.1038/s41598-021-81914-0.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gampenrieder SP, Rinnerthaler G, Hackl H, Pulverer W, Weinhaeusel A, Ilic S, et al. DNA methylation signatures predicting bevacizumab efficacy in metastatic breast cancer. Theranostics. 2018. https://doi.org/10.7150/thno.23544.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shord SS, Bressler LR, Tierney LA, Cuellar S, George A. Understanding and managing the possible adverse effects associated with bevacizumab. Am J Health Syst Pharm. 2009;66(11):999–1013.

    Article  CAS  Google Scholar 

  51. Kazazi-Hysen F, Beijnen JH, Schellens JH. Bevacizumab. Oncologist. 2010;15(8):819.

    Article  Google Scholar 

  52. Spring LM, Wander SA, Zangardi M, Bardia A. CDK 4/6 inhibitors in breast cancer: current controversies and future directions. Curr Oncol Rep. 2019. https://doi.org/10.1007/s11912-019-0769-3.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lynce F, Shajahan-Haq AN, Swain SM. CDK4/6 inhibitors in breast cancer therapy: current practice and future opportunities. Pharmacol Ther. 2018. https://doi.org/10.1016/j.pharmthera.2018.06.008.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kwapisz D. Cyclin-dependent kinase 4/6 inhibitors in breast cancer: palbociclib, ribociclib, and abemaciclib. Breast Cancer Res Treat. 2017. https://doi.org/10.1007/s10549-017-4385-3.

    Article  PubMed  Google Scholar 

  55. Ciruelos E, Villagrasa P, Pascual T, Oliveira M, Pernas S, Paré L, et al. Palbociclib and trastuzumab in HER2-positive advanced breast cancer: results from the phase II SOLTI-1303 PATRICIA trial. Clin Cancer Res. 2020. https://doi.org/10.1158/1078-0432.CCR-20-0844.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mayer EL, Dueck AC, Martin M, Rubovszky G, Burstein HJ, Bellet-Ezquerra M, et al. Palbociclib with adjuvant endocrine therapy in early breast cancer (PALLAS): interim analysis of a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2021. https://doi.org/10.1016/S1470-2045(20)30642-2.

    Article  PubMed  Google Scholar 

  57. Wedam S, Fashoyin-Aje L, Bloomquist E, Tang S, Sridhara R, Goldberg KB, et al. FDA approval summary: palbociclib for male patients with metastatic breast cancer. Clin Cancer Res. 2020;26(6):1208–12.

    Article  CAS  Google Scholar 

  58. Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S, et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med. 2016. https://doi.org/10.1056/nejmoa1609709.

    Article  PubMed  Google Scholar 

  59. Im SA, Lu YS, Bardia A, Harbeck N, Colleoni M, Franke F, et al. Overall survival with ribociclib plus endocrine therapy in breast cancer. N Engl J Med. 2019. https://doi.org/10.1056/nejmoa1903765.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Edessa D, Sisay M. Recent advances of cyclin-dependent kinases as potential therapeutic targets in HR+/HER2– metastatic breast cancer: a focus on ribociclib. Breast Cancer. 2017. https://doi.org/10.2147/BCTT.S150540.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Syed YY. Ribociclib: first global approval. Drugs. 2017;77(7):799–807.

    Article  CAS  Google Scholar 

  62. Voli LA, Mamyrbékova JA, Bazureau JP. Abemaciclib, a recent novel FDA-approved small molecule inhibiting cyclin-dependant kinase 4/6 for the treatment of metastatic breast cancer: a mini-review. Open J Med Chem. 2020. https://doi.org/10.4236/ojmc.2020.103007.

    Article  Google Scholar 

  63. Eggersmann TK, Degenhardt T, Gluz O, Wuerstlein R, Harbeck N. CDK4/6 inhibitors expand the therapeutic options in breast cancer: palbociclib. Ribociclib Abemaciclib BioDrugs. 2019. https://doi.org/10.1007/s40259-019-00337-6.

    Article  PubMed  Google Scholar 

  64. Kim ES. Abemaciclib: first global approval. Drugs. 2017. https://doi.org/10.1007/s40265-017-0840-z.

    Article  PubMed  Google Scholar 

  65. Chamcheu JC, Roy T, Uddin MB, Banang-mbeumi S, Chamcheu RN, Walker AL, et al. Role and therapeutic targeting of the PI3K / Akt / mTOR signaling pathway in skin cancer: natural and synthetic agents therapy. Cells. 2019;8(803):1–33.

    Google Scholar 

  66. Bahrami A, Khazaei M, Shahidsales S, Hassanian SM, Hasanzadeh M, Maftouh M, et al. The therapeutic potential of PI3K / Akt / mTOR inhibitors in. J Cell Biochem. 2018;119(1):213–22.

    Article  CAS  Google Scholar 

  67. Sobhani N, Generali D, Zanconati F, Bortul M, Scaggiante B. Current status of PI3K-mTOR inhibition in hormone-receptor positive, HER2-negative breast cancer. World J Clin Oncol. 2018. https://doi.org/10.5306/wjco.v9.i8.172.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sharma VR, Sharma AK, Punj V, Priya P. Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: a focus on breast cancer. Semin Cancer Biol. 2019. https://doi.org/10.1016/j.semcancer.2019.08.005.

    Article  PubMed  Google Scholar 

  69. Cidado J, Park BH. Targeting the PI3K/Akt/mTOR pathway for breast cancer therapy. J Mammary Gland Biol Neoplasia. 2012. https://doi.org/10.1007/s10911-012-9264-2.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Markman B, Dienstmann R, Tabernero J. Targeting the PI3K/Akt/mTOR pathway-beyond rapalogs. Oncotarget. 2010. https://doi.org/10.18632/oncotarget.188.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Slomovitz BM, Coleman RL. The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin Cancer Res. 2012. https://doi.org/10.1158/1078-0432.CCR-12-0662.

    Article  PubMed  Google Scholar 

  72. Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol. 2010. https://doi.org/10.1200/JCO.2009.25.3641.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Li X, Wu C, Chen N, Gu H, Yen A, Cao L, et al. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget. 2016. https://doi.org/10.18632/oncotarget.7961.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci. 2011. https://doi.org/10.3389/fnmol.2011.00051.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012. https://doi.org/10.3390/ijms13021886.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kenna MM, McGarrigle S, Pidgeon GP. The next generation of PI3K-Akt-mTOR pathway inhibitors in breast cancer cohorts. Biochimica et Biophysica Acta-Rev Cancer. 2018. https://doi.org/10.1016/j.bbcan.2018.08.001.

    Article  Google Scholar 

  77. Verret B, Cortes J, Bachelot T, Andre F, Arnedos M. Efficacy of PI3K inhibitors in advanced breast cancer. Ann Oncol. 2019. https://doi.org/10.1093/annonc/mdz381.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Roskoski R. Properties of FDA-approved small molecule phosphatidylinositol 3-kinase inhibitors prescribed for the treatment of malignancies. Pharmacol Res. 2021. https://doi.org/10.1016/j.phrs.2021.105579.

    Article  PubMed  Google Scholar 

  79. Paplomata E, Zelnak A, O’Regan R. Everolimus: side effect profile and management of toxicities in breast cancer. Breast Cancer Res Treat. 2013. https://doi.org/10.1007/s10549-013-2630-y.

    Article  PubMed  Google Scholar 

  80. Royce ME, Osman D. Everolimus in the treatment of metastatic breast cancer. Breast Cancer. 2015. https://doi.org/10.4137/BCBCR.S29268.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Raphael J, Lefebvre C, Allan A, Helou J, Boldt G, Vandenberg T, et al. Everolimus in advanced breast cancer: a systematic review and meta-analysis. Target Oncol. 2020. https://doi.org/10.1007/s11523-020-00770-6.

    Article  PubMed  Google Scholar 

  82. Cortesi L, Rugo HS, Jackisch C. An overview of PARP inhibitors for the treatment of breast cancer. Target Oncol. 2021. https://doi.org/10.1007/s11523-021-00796-4.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Livraghi L, Garber JE. PARP inhibitors in the management of breast cancer: current data and future prospects. BMC Med. 2015. https://doi.org/10.1186/s12916-015-0425-1.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gonçalves A, Bertucci A, Bertucci F. PARP inhibitors in the treatment of early breast cancer: the step beyond? Cancers. 2020. https://doi.org/10.3390/cancers12061378.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang X, Shi Y, Huang D, Guan X. Emerging therapeutic modalities of PARP inhibitors in breast cancer. Cancer Treat Rev. 2018. https://doi.org/10.1016/j.ctrv.2018.05.014.

    Article  PubMed  Google Scholar 

  86. Schwartzberg LS, Kiedrowski LA. Olaparib in hormone receptor-positive, HER2-negative metastatic breast cancer with a somatic BRCA2 mutation. Therap Adv Med Oncol. 2021. https://doi.org/10.1177/17588359211006962.

    Article  Google Scholar 

  87. U.S. Food and Drug Administration. FDA approves olaparib germline BRCA mutated metastatic breast cancer. 2018. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-olaparib-germline-brca-mutated-metastatic-breast-cancer. Accessed 1 Feb 2022.

  88. Hoy SM. Talazoparib: first global approval. Drugs. 2018. https://doi.org/10.1007/s40265-018-1026-z.

    Article  PubMed  PubMed Central  Google Scholar 

  89. U.S. Food and Drug Administration. FDA approves talazoparib gBRCAm her2 negative locally advanced or metastatic breast cancer. 2018. https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-talazoparib-gbrcam-her2-negative-locally-advanced-or-metastatic-breast-cancer. Accessed 1 Feb 2022.

  90. De Cicco P, Catani MV, Gasperi V, Sibilano M, Quaglietta M, Savini I. Nutrition and breast cancer: a literature review on prevention, treatment and recurrence. Nutrients. 2019. https://doi.org/10.3390/nu11071514.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Makena MR, Rao R. Subtype specific targeting of calcium signaling in breast cancer. Cell Calcium. 2020. https://doi.org/10.1016/j.ceca.2019.102109.

    Article  PubMed  Google Scholar 

  92. Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res. 2005. https://doi.org/10.1158/1078-0432.CCR-04-2421.

    Article  PubMed  Google Scholar 

  93. Waks AG, Winer EP. Breast cancer treatment. JAMA. 2019;321(3):316–316.

    Article  Google Scholar 

Download references

Acknowledgements

Figure 1 is adapted from “HER2 Signaling Pathway”, by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates. Figure 2 is adapted from “Bevacizumab: Potential Repurposed Drug Candidate for Covid-19”, by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates. Figure 3 is adapted from “Cell Cycle Deregulation in Cancer”, by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates. Figure 4 is adapted from “PI3K/Akt, RAS/MAPK, JAK/STAT Signaling”, by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates. Figure 5 is adapted from “PARP Inhibitors: Treatment for BRCA Mutant Breast Cancer” by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates.

Funding

The preparation of this review was not supported by any external funding.

Author information

Authors and Affiliations

Authors

Contributions

CBA provided the conception of the manuscript. BDC performed the literature search, reviewed the content, drafted the text, and critically revised the work. CBA wrote and approved the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cigir Biray Avci.

Ethics declarations

Conflict of interest

The authors declare no financial or non-financial competing interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir Cetinkaya, B., Biray Avci, C. Molecular perspective on targeted therapy in breast cancer: a review of current status. Med Oncol 39, 149 (2022). https://doi.org/10.1007/s12032-022-01749-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01749-1

Keywords