Skip to main content

Advertisement

Log in

Identification of the dominant angiogenic CXCL class chemokines associated with non-small cell lung cancer via bioinformatics tools

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Chemokines play a critical role in lung cancer progression and metastasis. In non-small cell lung cancer, the determination of dominant angiogenic CXCL-type chemokines may increase the efficacy of targeted therapy and modulate the prognosis of lung cancer. Also, chemokine and chemokine receptors shape the immune response in the cross-talk between both cancer cells and immune cells in the tumor microenvironment. In this computational evaluation study based on databases containing mostly RNA-seq analyses, it is aimed to determine the dominant angiogenic CXCL-type chemokines with the highest expression in lung adenocarcinoma tissues and particularly in non-small cell lung cancer cells. CXCL1, CXCL5, CXCL7, and CXCL8, which can potentially be co-regulated and associated with poor survival, and phagocyte infiltration including neutrophils and macrophages are predominantly identified in non-small cell lung cancer. Moreover, the receptors of these chemokines, CXCR1 (binding CXCL8) and CXCR2 (binding CXCL1, 5, 7, 8), are positively correlated with the infiltration of neutrophils and macrophages. With the discovery of the common regulatory mechanisms of these angiogenic chemokines and validation studies in clinical examples, the chemokine panels specific to non-small cell lung cancer will become clear and have a decisive role in the prognosis of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mollica Poeta V, Massara M, Capucetti A, Bonecchi R. Chemokines and chemokine receptors: new targets for cancer immunotherapy. Front Immunol. 2019;10:379. https://doi.org/10.3389/fimmu.2019.00379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Strieter RM, Belperio JA, Burdick MD, Sharma S, Dubinett SM, Keane MP. CXC chemokines: angiogenesis, immunoangiostasis, and metastases in lung cancer. Ann N Y Acad Sci. 2004;1028:351–60. https://doi.org/10.1196/annals.1322.041.

    Article  CAS  PubMed  Google Scholar 

  3. Yuan M, Zhu H, Xu J, Zheng Y, Cao X, Liu Q. Tumor-derived CXCL1 promotes lung cancer growth via recruitment of tumor-associated neutrophils. J Immunol Res. 2016;2016:6530410. https://doi.org/10.1155/2016/6530410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu K, Yu S, Liu Q, Bai X, Zheng X, Wu K. The clinical significance of CXCL5 in non-small cell lung cancer. Onco Targets Ther. 2017;10:5561–73. https://doi.org/10.2147/OTT.S148772.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li J, Tang Z, Wang H, Wu W, Zhou F, Ke H, et al. CXCL6 promotes non-small cell lung cancer cell survival and metastasis via down-regulation of miR-515-5p. Biomed Pharmacother. 2018;97:1182–8. https://doi.org/10.1016/j.biopha.2017.11.004.

    Article  CAS  PubMed  Google Scholar 

  6. Spaks A, Jaunalksne I, Spaka I, Chudasama D, Pirtnieks A, Krievins D. Diagnostic value of circulating CXC chemokines in non-small cell lung cancer. Anticancer Res. 2015;35(12):6979–83.

    CAS  PubMed  Google Scholar 

  7. De Filippo K, Henderson RB, Laschinger M, Hogg N. Neutrophil chemokines KC and macrophage-inflammatory protein-2 are newly synthesized by tissue macrophages using distinct TLR signaling pathways. J Immunol. 2008;180(6):4308–15. https://doi.org/10.4049/jimmunol.180.6.4308.

    Article  PubMed  Google Scholar 

  8. Lu J, Xu W, Qian J, Wang S, Zhang B, Zhang L, et al. Transcriptome profiling analysis reveals that CXCL2 is involved in anlotinib resistance in human lung cancer cells. BMC Med Genomics. 2019;12(Suppl 2):38. https://doi.org/10.1186/s12920-019-0482-y.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Scapini P, Morini M, Tecchio C, Minghelli S, Di Carlo E, Tanghetti E, et al. CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J Immunol. 2004;172(8):5034–40. https://doi.org/10.4049/jimmunol.172.8.5034.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang W, Wang H, Sun M, Deng X, Wu X, Ma Y, et al. CXCL5/CXCR2 axis in tumor microenvironment as potential diagnostic biomarker and therapeutic target. Cancer Commun. 2020;40(2–3):69–80. https://doi.org/10.1002/cac2.12010.

    Article  Google Scholar 

  11. Arenberg DA, Keane MP, DiGiovine B, Kunkel SL, Morris SB, Xue YY, et al. Epithelial-neutrophil activating peptide (ENA-78) is an important angiogenic factor in non-small cell lung cancer. J Clin Invest. 1998;102(3):465–72. https://doi.org/10.1172/JCI3145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grepin R, Guyot M, Giuliano S, Boncompagni M, Ambrosetti D, Chamorey E, et al. The CXCL7/CXCR1/2 axis is a key driver in the growth of clear cell renal cell carcinoma. Cancer Res. 2014;74(3):873–83. https://doi.org/10.1158/0008-5472.CAN-13-1267.

    Article  CAS  PubMed  Google Scholar 

  13. Masuya D, Huang C, Liu D, Kameyama K, Hayashi E, Yamauchi A, et al. The intratumoral expression of vascular endothelial growth factor and interleukin-8 associated with angiogenesis in nonsmall cell lung carcinoma patients. Cancer. 2001;92(10):2628–38. https://doi.org/10.1002/1097-0142(20011115)92:10%3c2628::aid-cncr1616%3e3.0.co;2-f.

    Article  CAS  PubMed  Google Scholar 

  14. Hol J, Wilhelmsen L, Haraldsen G. The murine IL-8 homologues KC, MIP-2, and LIX are found in endothelial cytoplasmic granules but not in Weibel-Palade bodies. J Leukoc Biol. 2010;87(3):501–8. https://doi.org/10.1189/jlb.0809532.

    Article  CAS  PubMed  Google Scholar 

  15. Azenshtein E, Meshel T, Shina S, Barak N, Keydar I, Ben-Baruch A. The angiogenic factors CXCL8 and VEGF in breast cancer: regulation by an array of pro-malignancy factors. Cancer Lett. 2005;217(1):73–86. https://doi.org/10.1016/j.canlet.2004.05.024.

    Article  CAS  PubMed  Google Scholar 

  16. Kim SJ, Uehara H, Karashima T, McCarty M, Shih N, Fidler IJ. Expression of interleukin-8 correlates with angiogenesis, tumorigenicity, and metastasis of human prostate cancer cells implanted orthotopically in nude mice. Neoplasia. 2001;3(1):33–42. https://doi.org/10.1038/sj.neo.7900124.

    Article  CAS  PubMed  Google Scholar 

  17. Liu Q, Li A, Tian Y, Wu JD, Liu Y, Li T, et al. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. 2016;31:61–71. https://doi.org/10.1016/j.cytogfr.2016.08.002.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123(3):725–31. https://doi.org/10.1007/s10549-009-0674-9.

    Article  CAS  PubMed  Google Scholar 

  19. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98–102. https://doi.org/10.1093/nar/gkx247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Consortium GT. Human genomics. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348(6235):648–60. https://doi.org/10.1126/science.1262110.

    Article  CAS  Google Scholar 

  21. Consortium GT. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580–5. https://doi.org/10.1038/ng.2653.

    Article  CAS  Google Scholar 

  22. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–7. https://doi.org/10.1038/nature11003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17(9):559–72. https://doi.org/10.1038/nri.2017.49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Keeley EC, Mehrad B, Strieter RM. Chemokines as mediators of tumor angiogenesis and neovascularization. Exp Cell Res. 2011;317(5):685–90. https://doi.org/10.1016/j.yexcr.2010.10.020.

    Article  CAS  PubMed  Google Scholar 

  25. Gu LP, Yao YX, Chen ZW. An inter-correlation among chemokine (C-X-C motif) ligand (CXCL) 1, CXCL2 and CXCL8, and their diversified potential as biomarkers for tumor features and survival profiles in non-small cell lung cancer patients. Transl Cancer Res. 2021;10(2):748. https://doi.org/10.21037/tcr-20-2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Q, Li A, Yu S, Qin S, Han N, Pestell RG, et al. DACH1 antagonizes CXCL8 to repress tumorigenesis of lung adenocarcinoma and improve prognosis. J Hematol Oncol. 2018;11(1):53. https://doi.org/10.1186/s13045-018-0597-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity. 2012;36(5):705–16. https://doi.org/10.1016/j.immuni.2012.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Herjan T, Yao P, Qian W, Li X, Liu C, Bulek K, et al. HuR is required for IL-17-induced Act1-mediated CXCL1 and CXCL5 mRNA stabilization. J Immunol. 2013;191(2):640–9. https://doi.org/10.4049/jimmunol.1203315.

    Article  CAS  PubMed  Google Scholar 

  29. Katanov C, Lerrer S, Liubomirski Y, Leider-Trejo L, Meshel T, Bar J, et al. Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-alpha and the NF-kappaB pathway. Stem Cell Res Ther. 2015;6:87. https://doi.org/10.1186/s13287-015-0080-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen X, Jin R, Chen R, Huang Z. Complementary action of CXCL1 and CXCL8 in pathogenesis of gastric carcinoma. Int J Clin Exp Pathol. 2018;11(2):1036–45.

    PubMed  PubMed Central  Google Scholar 

  31. Wang L, Shi L, Gu J, Zhan C, Xi J, Ding J, et al. CXCL5 regulation of proliferation and migration in human non-small cell lung cancer cells. J Physiol Biochem. 2018;74(2):313–24. https://doi.org/10.1007/s13105-018-0619-z.

    Article  CAS  PubMed  Google Scholar 

  32. Du Q, Li E, Liu Y, Xie W, Huang C, Song J, et al. CTAPIII/CXCL7: a novel biomarker for early diagnosis of lung cancer. Cancer Med. 2018;7(2):325–35. https://doi.org/10.1002/cam4.1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baggiolini M, Dewald B, Moser B. Human chemokines: an update. Annu Rev Immunol. 1997;15:675–705. https://doi.org/10.1146/annurev.immunol.15.1.675.

    Article  CAS  PubMed  Google Scholar 

  34. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004;4(7):540–50. https://doi.org/10.1038/nrc1388.

    Article  CAS  PubMed  Google Scholar 

  35. Chapman RW, Phillips JE, Hipkin RW, Curran AK, Lundell D, Fine JS. CXCR2 antagonists for the treatment of pulmonary disease. Pharmacol Ther. 2009;121(1):55–68. https://doi.org/10.1016/j.pharmthera.2008.10.005.

    Article  CAS  PubMed  Google Scholar 

  36. Saintigny P, Massarelli E, Lin S, Ahn YH, Chen Y, Goswami S, et al. CXCR2 expression in tumor cells is a poor prognostic factor and promotes invasion and metastasis in lung adenocarcinoma. Cancer Res. 2013;73(2):571–82. https://doi.org/10.1158/0008-5472.CAN-12-0263.

    Article  CAS  PubMed  Google Scholar 

  37. Baird AM, Gray SG, O’Byrne KJ. Epigenetics underpinning the regulation of the CXC (ELR+) chemokines in non-small cell lung cancer. PLoS ONE. 2011;6(1):e14593. https://doi.org/10.1371/journal.pone.0014593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tian H, Wang LY, Liu Y, Wang YL, Zheng YJ, Fan T, et al. Bioinformatics analyses reveals a comprehensive landscape of CXC chemokine family functions in non-small cell lung cancer. Biomed Res Int. 2021. https://doi.org/10.1155/2021/6686158.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work did not receive any financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nese Unver.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unver, N. Identification of the dominant angiogenic CXCL class chemokines associated with non-small cell lung cancer via bioinformatics tools. Med Oncol 38, 68 (2021). https://doi.org/10.1007/s12032-021-01517-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01517-7

Keywords

Navigation