Skip to main content

Advertisement

Log in

Optimizing tumor immune response through combination of radiation and immunotherapy

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Radiation therapy and immunotherapy are two highly evolving modalities for the treatment of solid tumors. Immunotherapeutic drugs can either stimulate the immune system via immunogenic pathways or target co-inhibitory checkpoints. An augmented tumor cell recognition by host immune cells can be achieved post-irradiation, as irradiated tissues can release chemical signals which are sensed by the immune system resulting in its activation. Different strategies combining both treatment modalities were tested in order to achieve a better therapeutic response and longer tumor control. Both regimens act synergistically to one another with complimentary mechanisms. In this review, we explore the scientific basis behind such a combination, starting initially with a brief historical overview behind utilizing radiation and immunotherapies for solid tumors, followed by the different types of these two modalities, and the biological concept behind their synergistic effect. We also shed light on the common side effects and toxicities associated with radiation and immunotherapy. Finally, we discuss previous clinical trials tackling this multimodality combination and highlight future ongoing research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schuster M, Nechansky A, Kircheis R. Cancer immunotherapy. Biotechnol J. 2006;1(2):138–47.

    Article  CAS  PubMed  Google Scholar 

  2. Helmy KY, et al. Cancer immunotherapy: accomplishments to date and future promise. Ther Deliv. 2013;4(10):1307–20.

    Article  CAS  PubMed  Google Scholar 

  3. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480(7378):480–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schwartz RS. Book review. N Engl J Med. 1997;337(16):1178–9.

    Article  Google Scholar 

  5. Sylvester RJ. Bacillus Calmette–Guérin treatment of non-muscle invasive bladder cancer. Int J Urol. 2011;18(2):113–20.

    Article  CAS  PubMed  Google Scholar 

  6. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137–48.

    Article  CAS  PubMed  Google Scholar 

  7. Rosenberg SA. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity. 1999;10(3):281–7.

    Article  CAS  PubMed  Google Scholar 

  8. Boon T, et al. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994;12:337–65.

    Article  CAS  PubMed  Google Scholar 

  9. Boon T, van der Bruggen P. Human tumor antigens recognized by T lymphocytes. J Exp Med. 1996;183(3):725–9.

    Article  CAS  PubMed  Google Scholar 

  10. Urbanski M, Cone RE. Appearance of T lymphocyte-derived proteins specific for the immunizing antigen in serum during a humoral immune response. J Immunol. 1992;148(9):2840–4.

    CAS  PubMed  Google Scholar 

  11. Sologuren I, Rodríguez-Gallego C, Lara PC. Immune effects of high dose radiation treatment: implications of ionizing radiation on the development of bystander and abscopal effects. Transl Cancer Res. 2014;3(1):18–31.

    CAS  Google Scholar 

  12. Demaria S, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58(3):862–70.

    Article  PubMed  Google Scholar 

  13. Kaur P, Asea A. Radiation-induced effects and the immune system in cancer. Front Oncol. 2012;2:191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schaue D, Kachikwu EL, McBride WH. Cytokines in radiobiological responses: a review. Radiat Res. 2012;178(6):505–23.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tesniere A, et al. Molecular characteristics of immunogenic cancer cell death. Cell Death Differ. 2008;15(1):3–12.

    Article  CAS  PubMed  Google Scholar 

  16. Lumniczky K, Safrany G. Cancer gene therapy: combination with radiation therapy and the role of bystander cell killing in the anti-tumor effect. Pathol Oncol Res. 2006;12(2):118–24.

    Article  CAS  PubMed  Google Scholar 

  17. Willimsky G, Blankenstein T. Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature. 2005;437(7055):141–6.

    Article  CAS  PubMed  Google Scholar 

  18. Dunn GP, et al. A critical function for type I interferons in cancer immunoediting. Nat Immunol. 2005;6(7):722–9.

    Article  CAS  PubMed  Google Scholar 

  19. Velcheti V, Schalper K. Basic overview of current immunotherapy approaches in cancer. Am Soc Clin Oncol Educ Book. 2016;35:298–308.

    Article  PubMed  Google Scholar 

  20. Vatner RE, et al. Combinations of immunotherapy and radiation in cancer therapy. Front Oncol. 2014;4:325.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Thaxton JE, Li Z. To affinity and beyond: harnessing the T cell receptor for cancer immunotherapy. Hum Vaccines Immunother. 2014;10(11):3313–21.

    Article  Google Scholar 

  22. Willemsen RA, et al. T cell retargeting with MHC class I-restricted antibodies: the CD28 costimulatory domain enhances antigen-specific cytotoxicity and cytokine production. J Immunol. 2005;174(12):7853–8.

    Article  CAS  PubMed  Google Scholar 

  23. Seliger B. Molecular mechanisms of MHC class I abnormalities and APM components in human tumors. Cancer Immunol Immunother. 2008;57(11):1719–26.

    Article  CAS  PubMed  Google Scholar 

  24. Aptsiauri N, et al. Role of altered expression of HLA class I molecules in cancer progression. Adv Exp Med Biol. 2007;601:123–31.

    Article  PubMed  Google Scholar 

  25. Poschke I, Mougiakakos D, Kiessling R. Camouflage and sabotage: tumor escape from the immune system. Cancer Immunol Immunother. 2011;60(8):1161–71.

    Article  CAS  PubMed  Google Scholar 

  26. Campoli M, Chang CC, Ferrone S. HLA class I antigen loss, tumor immune escape and immune selection. Vaccine. 2002;20(Suppl 4):A40–5.

    Article  CAS  PubMed  Google Scholar 

  27. Gajewski TF, et al. Immune resistance orchestrated by the tumor microenvironment. Immunol Rev. 2006;213:131–45.

    Article  CAS  PubMed  Google Scholar 

  28. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dany M, et al. Advances in immunotherapy for melanoma management. Hum Vaccine Immunother. 2016;12(10):2501–11.

    Article  Google Scholar 

  30. Camacho LH. CTLA-4 blockade with ipilimumab: biology, safety, efficacy, and future considerations. Cancer Med. 2015;4(5):661–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Linsley PS, et al. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity. 1996;4(6):535–43.

    Article  CAS  PubMed  Google Scholar 

  32. Michielin O, Hoeller C. Gaining momentum: new options and opportunities for the treatment of advanced melanoma. Cancer Treat Rev. 2015;41(8):660–70.

    Article  CAS  PubMed  Google Scholar 

  33. Trinh VA, Hagen B. Ipilimumab for advanced melanoma: a pharmacologic perspective. J Oncol Pharm Pract. 2013;19(3):195–201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Topalian SL, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32(10):1020–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hurley KE, Chapman PB. Helping melanoma patients decide whether to choose adjuvant high-dose interferon-alpha2b. Oncologist. 2005;10(9):739–42.

    Article  CAS  PubMed  Google Scholar 

  36. Yang JC, et al. Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J Clin Oncol. 2003;21(16):3127–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barker CA, Postow MA. Combinations of radiation therapy and immunotherapy for melanoma: a review of clinical outcomes. Int J Radiat Oncol Biol Phys. 2014;88(5):986–97.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Begley CG, et al. Human B lymphocytes express the p75 component of the interleukin 2 receptor. Leuk Res. 1990;14(3):263–71.

    Article  CAS  PubMed  Google Scholar 

  39. Wagner TC, et al. Interferon receptor expression regulates the antiproliferative effects of interferons on cancer cells and solid tumors. Int J Cancer. 2004;111(1):32–42.

    Article  CAS  PubMed  Google Scholar 

  40. Panelli MC, et al. Forecasting the cytokine storm following systemic interleukin (IL)-2 administration. J Transl Med. 2004;2(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Markman M, et al. Phase 2 trial of interferon-beta as second-line treatment of ovarian cancer, fallopian tube cancer, or primary carcinoma of the peritoneum. Oncology. 2004;66(5):343–6.

    Article  CAS  PubMed  Google Scholar 

  42. Haji-Fatahaliha M, et al. CAR-modified T-cell therapy for cancer: an updated review. Artif Cells Nanomed Biotechnol. 2016;44(6):1339–49.

    CAS  PubMed  Google Scholar 

  43. Eckert F, et al. Beyond checkpoint inhibition – Immunotherapeutical strategies in combination with radiation. Clin Transl Radiat Oncol. 2017;2:29–35.

    Article  Google Scholar 

  44. Lugade AA, et al. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol. 2005;174(12):7516–23.

    Article  CAS  PubMed  Google Scholar 

  45. Matsumura S, et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol. 2008;181(5):3099–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Griffiths DJ. Introduction to electrodynamics. 3rd ed. Upper Saddle River: Prentice Hall; 1999. p. xv.

    Google Scholar 

  47. Laugier A. The first century of radiotherapy in France. Bull Acad Natl Med. 1996;180(1):143–60.

    CAS  PubMed  Google Scholar 

  48. Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nat Rev Cancer. 2004;4(9):737–47.

    Article  CAS  PubMed  Google Scholar 

  49. Thwaites DI, Tuohy JB. Back to the future: the history and development of the clinical linear accelerator. Phys Med Biol. 2006;51(13):R343–62.

    Article  PubMed  Google Scholar 

  50. Purdy JA. 3D treatment planning and intensity-modulated radiation therapy. Oncology (Williston Park). 1999;13(10 Suppl 5):155–68.

    CAS  Google Scholar 

  51. Galvin JM, et al. Implementing IMRT in clinical practice: a joint document of the American Society for Therapeutic Radiology and Oncology and the American Association of Physicists in Medicine. Int J Radiat Oncol Biol Phys. 2004;58(5):1616–34.

    Article  PubMed  Google Scholar 

  52. Macia IGM. Radiobiology of stereotactic body radiation therapy (SBRT). Rep Pract Oncol Radiother. 2017;22(2):86–95.

    Article  Google Scholar 

  53. Bhattacharya IS, et al. Stereotactic body radiotherapy (SBRT) in the management of extracranial oligometastatic (OM) disease. Br J Radiol. 1048;2015(88):20140712.

    Google Scholar 

  54. Greco C, et al. Spinal metastases: from conventional fractionated radiotherapy to single-dose SBRT. Rep Pract Oncol Radiother. 2015;20(6):454–63.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Linskey ME, et al. The role of stereotactic radiosurgery in the management of patients with newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol. 2010;96(1):45–68.

    Article  PubMed  Google Scholar 

  56. Trakul N, Koong AC, Chang DT. Stereotactic body radiotherapy in the treatment of pancreatic cancer. Semin Radiat Oncol. 2014;24(2):140–7.

    Article  PubMed  Google Scholar 

  57. Jaffray DA. Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol. 2012;9(12):688–99.

    Article  CAS  PubMed  Google Scholar 

  58. Glide-Hurst CK, Chetty IJ. Improving radiotherapy planning, delivery accuracy, and normal tissue sparing using cutting edge technologies. J Thorac Dis. 2014;6(4):303–18.

    PubMed  PubMed Central  Google Scholar 

  59. Jaffray DA, et al. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys. 2002;53(5):1337–49.

    Article  PubMed  Google Scholar 

  60. Huntzinger C, et al. Dynamic targeting image-guided radiotherapy. Med Dosim. 2006;31(2):113–25.

    Article  PubMed  Google Scholar 

  61. Fields EC, Weiss E. A practical review of magnetic resonance imaging for the evaluation and management of cervical cancer. Radiat Oncol. 2016;11:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Tanderup K, et al. Magnetic resonance image guided brachytherapy. Semin Radiat Oncol. 2014;24(3):181–91.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pollard JM, et al. The future of image-guided radiotherapy will be MR guided. Br J Radiol. 1073;2017(90):20160667.

    Google Scholar 

  64. NIH, U.S. ClinicalTrials.gov. 2017.

  65. Bernstein MB, et al. Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach? Nat Rev Clin Oncol. 2016;13(8):516–24.

    Article  CAS  PubMed  Google Scholar 

  66. Shabason JE, Minn AJ. Radiation and immune checkpoint blockade: from bench to clinic. Semin Radiat Oncol. 2017;27(3):289–98.

    Article  PubMed  Google Scholar 

  67. Fadul CE, et al. Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J Immunother. 2011;34(4):382–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sampson JH, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010;28(31):4722–9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kwon ED, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15(7):700–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Heery CR, et al. Samarium-153-EDTMP (Quadramet(R)) with or without vaccine in metastatic castration-resistant prostate cancer: a randomized Phase 2 trial. Oncotarget. 2016;7(42):69014–23.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tang C, et al. Ipilimumab with stereotactic ablative radiation therapy: phase I results and immunologic correlates from peripheral T cells. Clin Cancer Res. 2017;23(6):1388–96.

    Article  CAS  PubMed  Google Scholar 

  72. Raj S, et al. Long-term clinical responses of neoadjuvant dendritic cell infusions and radiation in soft tissue sarcoma. Sarcoma. 2015;2015:614736.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hiniker SM, et al. A prospective clinical trial combining radiation therapy with systemic immunotherapy in metastatic melanoma. Int J Radiat Oncol Biol Phys. 2016;96(3):578–88.

    Article  PubMed  Google Scholar 

  74. Kiess AP, et al. Stereotactic radiosurgery for melanoma brain metastases in patients receiving ipilimumab: safety profile and efficacy of combined treatment. Int J Radiat Oncol Biol Phys. 2015;92(2):368–75.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ahmed KA, et al. Clinical outcomes of melanoma brain metastases treated with stereotactic radiation and anti-PD-1 therapy. Ann Oncol. 2016;27(3):434–41.

    Article  CAS  PubMed  Google Scholar 

  76. Alatrash G, et al. Cancer immunotherapies, their safety and toxicity. Expert Opin Drug Saf. 2013;12(5):631–45.

    Article  CAS  PubMed  Google Scholar 

  77. Roberts CM, et al. Radiation pneumonitis: a possible lymphocyte-mediated hypersensitivity reaction. Ann Intern Med. 1993;118(9):696–700.

    Article  CAS  PubMed  Google Scholar 

  78. Morgan GW, Breit SN. Radiation and the lung: a reevaluation of the mechanisms mediating pulmonary injury. Int J Radiat Oncol Biol Phys. 1995;31(2):361–9.

    Article  CAS  PubMed  Google Scholar 

  79. Abdel-Wahab N, Shah M, Suarez-Almazor ME. Adverse events associated with immune checkpoint blockade in patients with cancer: a systematic review of case reports. PLoS ONE. 2016;11(7):e0160221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Alley EW, et al. Immunotherapy and radiation therapy for malignant pleural mesothelioma. Transl Lung Cancer Res. 2017;6(2):212–9.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Shaverdian N, et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017;18(7):895–903.

    Article  CAS  PubMed  Google Scholar 

  82. Qadeer MA, Vargo JJ. Approaches to the prevention and management of radiation colitis. Curr Gastroenterol Rep. 2008;10(5):507–13.

    Article  PubMed  Google Scholar 

  83. Gangadhar TC, Vonderheide RH. Mitigating the toxic effects of anticancer immunotherapy. Nat Rev Clin Oncol. 2014;11(2):91–9.

    Article  CAS  PubMed  Google Scholar 

  84. Twyman-Saint Victor C, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520(7547):373–7.

    Article  CAS  PubMed  Google Scholar 

  85. Barker CA, et al. Concurrent radiotherapy and ipilimumab immunotherapy for patients with melanoma. Cancer Immunol Res. 2013;1(2):92–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Slovin SF, et al. Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol. 2013;24(7):1813–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hiniker SM, Maecker HT, Knox SJ. Predictors of clinical response to immunotherapy with or without radiotherapy. J Radiat Oncol. 2015;4:339–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Taube JM, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20(19):5064–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tumeh PC, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yuan J, et al. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J Immunother Cancer. 2016;4:3.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Snyder A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Rizvi NA, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wolchok JD, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20.

    Article  CAS  PubMed  Google Scholar 

  94. Eisenhauer EA, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.

    Article  CAS  PubMed  Google Scholar 

  95. Hoos A, et al. Improved endpoints for cancer immunotherapy trials. J Natl Cancer Inst. 2010;102(18):1388–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hoos A, et al. A clinical development paradigm for cancer vaccines and related biologics. J Immunother. 2007;30(1):1–15.

    Article  PubMed  Google Scholar 

  97. Ratain MJ, Eckhardt SG. Phase II studies of modern drugs directed against new targets: if you are fazed, too, then resist RECIST. J Clin Oncol. 2004;22(22):4442–5.

    Article  PubMed  Google Scholar 

  98. Spiotto M, Fu Y-X, Weichselbaum RR. The intersection of radiotherapy and immunotherapy: mechanisms and clinical implications. Sci Immunol. 2016. doi:10.1126/sciimmunol.aag1266.

    Google Scholar 

  99. Herbst RS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chow LQM, et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol. 2016;34(32):3838–45.

    Article  Google Scholar 

  101. Sheikh NA, et al. Sipuleucel-T immune parameters correlate with survival: an analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer. Cancer Immunol Immunother. 2013;62(1):137–47.

    Article  CAS  PubMed  Google Scholar 

  102. Ku GY, et al. Single-institution experience with ipilimumab in advanced melanoma patients in the compassionate use setting: lymphocyte count after 2 doses correlates with survival. Cancer. 2010;116(7):1767–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Grass GD, Krishna N, Kim S. The immune mechanisms of abscopal effect in radiation therapy. Curr Probl Cancer. 2016;40:10–24.

    Article  PubMed  Google Scholar 

  104. Postow MA, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366:925–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Demaria S, Golden EB, Formenti SC. Role of local radiation therapy in cancer immunotherapy. JAMA Oncol. 2015;1:1325–32.

    Article  PubMed  Google Scholar 

  106. Demaria S, Pilones KA, Vanpouille-Box C, Golden EB, Formenti SC. The optimal partnership of radiation and immunotherapy: From preclinical studies to clinical translation. Radiat Res. 2014;182:170–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Demaria S, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58:862–70.

    Article  PubMed  Google Scholar 

  108. Dewan MZ, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009;15(17):5379–88. doi:10.1158/1078-0432.CCR-09-0265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shi W, Siemann DW. Augmented antitumor effects of radiation therapy by 4-1bb antibody (bms-469492) treatment. Anticancer Res. 2006;26:3445–53.

    CAS  PubMed  Google Scholar 

  110. Hiniker SM, Knox SJ. Immunotherapy and radiation. Semin Oncol. 2014;41:702–13.

    Article  PubMed  Google Scholar 

  111. Demaria S, et al. Immune-mediated inhibition of metastases after treatment with local radiation and ctla-4 blockade in a mouse model of breast cancer. Clin Cancer Res. 2005;11:728–34.

    CAS  PubMed  Google Scholar 

  112. Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: A paradigm shift. J Natl Cancer Inst. 2013;105:256–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ruocco MG, et al. Suppressing t cell motility induced by anti–ctla-4 monotherapy improves antitumor effects. J Clin Invest. 2012;122:3718–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yoshimoto Y, et al. Radiotherapy-induced anti-tumor immunity contributes to the therapeutic efficacy of irradiation and can be augmented by ctla-4 blockade in a mouse model. PloS One. 2014;9:e92572.

    Article  CAS  Google Scholar 

  115. Zeng J, et al. Anti-pd-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86:343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Victor CT-S, et al. Radiation and dual checkpoint blockade activates non-redundant immune mechanisms in cancer. Nature. 2015;520:373–7.

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shamseddine.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent was obtained as no human subjects were involved in this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Chediak, A., Shamseddine, A., Bodgi, L. et al. Optimizing tumor immune response through combination of radiation and immunotherapy. Med Oncol 34, 165 (2017). https://doi.org/10.1007/s12032-017-1025-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-017-1025-z

Keywords

Navigation