Skip to main content

Advertisement

Log in

MiR-34c inhibits osteosarcoma metastasis and chemoresistance

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Studies have shown that miR-34c is associated with metastasis and the chemoresponse of several cancers, but its role in osteosarcoma (OS) is unclear. Here, we investigated the role and mechanism of miR-34c in OS metastasis and chemoresponse. In this study, we found that the expression of miR-34c was significantly decreased in specimens from OS patients with a poor chemoresponse or metastasis compared to those with a good chemoresponse and no metastasis. The inhibition of miR-34c significantly stimulated OS cell invasion and chemoresistance in vitro. In contrast, restoring miR-34c significantly inhibited OS cell invasion and chemoresistance. Furthermore, we identified Notch1 and lymphoid enhancer-binding factor 1 (LEF1) as target genes of miR-34c in OS cells and demonstrated that Notch1 and LEF1 have a major role in the effects of miR-34c on OS cell chemosensitivity and metastasis. Taken together, our data indicate that miR-34c suppresses OS metastasis and chemoresistance by targeting Notch1 and LEF1. Restoring miR-34c may have important implications for the development of strategies for inhibiting metastasis and overcoming OS cell resistance to chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Messerschmitt PJ, Garcia RM, Abdul-Karim FW, Greenfield EM, Getty PJ. Osteosarcoma. J Am Acad Orthop Surg. 2009;17:515–27.

    PubMed  Google Scholar 

  2. Thayanithy V, Sarver AL, Kartha RV, Li L, Angstadt AY, Breen M, et al. Perturbation of 14q32 miRNAs-cMYC gene network in osteosarcoma. Bone. 2012;50:171–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Broadhead ML, Clark JC, Myers DE, Dass CR, Choong PF. The molecular pathogenesis of osteosarcoma: a review. Sarcoma. 2011;2011:959248.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Marulanda GA, Henderson ER, Johnson DA, Letson GD, Cheong D. Orthopedic surgery options for the treatment of primary osteosarcoma. Cancer Control. 2008;15:13–20.

    PubMed  Google Scholar 

  5. Huang J, Ni J, Liu K, Yu Y, Xie M, Kang R, et al. HMGB1 promotes drug resistance in osteosarcoma. Cancer Res. 2012;72:230–8.

    Article  CAS  PubMed  Google Scholar 

  6. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  7. Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM. MicroRNA expression and function in cancer. Trends Mol Med. 2006;12:580–7.

    Article  CAS  PubMed  Google Scholar 

  8. Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol. 2010;11:136–46.

    Article  CAS  PubMed  Google Scholar 

  9. Chistiakov DA, Chekhonin VP. Contribution of microRNAs to radio- and chemoresistance of brain tumors and their therapeutic potential. Eu J Pharmacol. 2012;684:8–18.

    Article  CAS  Google Scholar 

  10. He C, Xiong J, Xu X, Lu W, Liu L, Xiao D, et al. Functional elucidation of MiR-34 in osteosarcoma cells and primary tumor samples. Biochem Biophys Res Communi. 2009;388:35–40.

    Article  CAS  Google Scholar 

  11. van der Deen M, Taipaleenmaki H, Zhang Y, Teplyuk NM, Gupta A, Cinghu S, et al. MicroRNA-34c inversely couples the biological functions of the runt-related transcription factor RUNX2 and the tumor suppressor p53 in osteosarcoma. J Biol Chem. 2013;288:21307–19.

    Article  PubMed  Google Scholar 

  12. Wu H, Huang M, Lu M, Zhu W, Shu Y, Cao P, et al. Regulation of microtubule-associated protein tau (MAPT) by miR-34c-5p determines the chemosensitivity of gastric cancer to paclitaxel. Cancer Chem Pharmacol. 2013;71:1159–71.

    Article  CAS  Google Scholar 

  13. Yang S, Li Y, Gao J, Zhang T, Li S, Luo A, et al. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene. 2013;32:4294–303.

    Article  CAS  PubMed  Google Scholar 

  14. Bacci G, Bertoni F, Longhi A, Ferrari S, Forni C, Biagini R, et al. Neoadjuvant chemotherapy for high-grade central osteosarcoma of the extremity. Histologic response to preoperative chemotherapy correlates with histologic subtype of the tumor. Cancer. 2003;97:3068–75.

    Article  CAS  PubMed  Google Scholar 

  15. Xu CX, Jere D, Jin H, Chang SH, Chung YS, Shin JY, et al. Poly(ester amine)-mediated, aerosol-delivered Akt1 small interfering RNA suppresses lung tumorigenesis. Am J Respir Crit Care Med. 2008;178:60–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Meyers PA, Schwartz CL, Krailo M, Kleinerman ES, Betcher D, Bernstein ML, et al. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J Clin Oncol. 2005;23:2004–11.

    Article  CAS  PubMed  Google Scholar 

  17. Catuogno S, Cerchia L, Romano G, Pognonec P, Condorelli G, de Franciscis V. MiR-34c may protect lung cancer cells from paclitaxel-induced apoptosis. Oncogene. 2013;32:341–51.

    Article  CAS  PubMed  Google Scholar 

  18. Macfarlane LA, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010;11:537–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Di Leva G, Croce CM. Roles of small RNAs in tumor formation. Trends Mol Med. 2010;16:257–67.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celia-Terrassa T, et al. Direct targeting of Sec23a by miR-200 s influences cancer cell secretome and promotes metastatic colonization. Nat Med. 2011;17:1101–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Bhattacharya A, Ziebarth JD, Cui Y. SomamiR: a database for somatic mutations impacting microRNA function in cancer. Nucleic Acids Res. 2013;41:D977–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Mu X, Isaac C, Greco N, Huard J, Weiss K. Notch signaling is associated with ALDH activity and an aggressive metastatic phenotype in murine osteosarcoma cells. Front Oncol. 2013;3:143.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Hsu KW, Hsieh RH, Huang KH, Fen-Yau Li A, Chi CW, Wang TY, et al. Activation of the Notch1/STAT3/twist signaling axis promotes gastric cancer progression. Carcinogenesis. 2012;33:1459–67.

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, Ladanyi M, et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 2009;138:51–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (2011AA030101); and the China International Medical Foundation (CIMF-F-H001-240).

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Xiong Xu or Yan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Jin, H., Xu, CX. et al. MiR-34c inhibits osteosarcoma metastasis and chemoresistance. Med Oncol 31, 972 (2014). https://doi.org/10.1007/s12032-014-0972-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0972-x

Keywords

Navigation