Skip to main content

Advertisement

Log in

STAT3 Tyr705 phosphorylation affects clinical outcome in patients with newly diagnosed supratentorial glioblastoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

STAT3 tyrosine705 phosphorylation (p-STAT3, Tyr705), a molecular hub for several signal transduction pathways of glioma, plays a central role in glioblastoma (GBM) carcinogenesis and progression. However, it is still controversial whether p-STAT3 expression is associated with the clinical outcome of patients with glioblastoma. Such evidence would contribute to further illustrate whether STAT3 inhibition is suitable for clinical treatment. Here, we examined the expression of p-STAT3 in the tumor tissues from 90 patients with newly diagnosed supratentorial GBM via immunohistochemical technique and evaluated the influences of its expression on progression-free survival (PFS) and overall survival (OS) using the Kaplan–Meier curve and COX proportional hazards regression model. Immunohistochemical assay indicated increased expression of p-STAT3 in GBM tissue compared to adjacent normal brain tissue without p-STAT3 expression. There were no observed associations between p-STAT3 expression and patients’ gender (P = 0.660), age (P = 0.867) or preoperative Karnofsky Performance Status (KPS) (P = 0.121). Univariate survival analysis revealed significant correlations of high p-STAT3 expression with shorter PFS (P = 0.012) and OS (P = 0.009). Multivariate survival analysis confirmed high p-STAT3 expression as a significant prognostic indicator for shorter PFS (HR 2.158, P = 0.019) and OS (HR 2.120, P = 0.031), independent of age, KPS and chemoradiotherapy. In summary, the high percentage of p-STAT3 positive tumor cells is a significant independent prognostic indicator for poor clinical outcome in patients with GBM, in addition to advanced age, poor performance status and nonstandard chemoradiotherapy, suggesting that STAT3 might be as a promising therapeutic target in GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Yang LJ, Zhou CF, Lin ZX. Temozolomide and radiotherapy for newly diagnosed glioblastoma multiforme: a systematic review. Cancer Invest. 2014;32(2):31–6.

    Article  PubMed  CAS  Google Scholar 

  3. Sherry MM, Reeves A, Wu JK, Cochran BH. STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells. 2009;27(10):2383–92.

    Article  PubMed  CAS  Google Scholar 

  4. Hirano T, Ishihara K, Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene. 2000;19(21):2548–56.

    Article  PubMed  CAS  Google Scholar 

  5. Levy DE, Darnell JE Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3(9):651–62.

    Article  PubMed  CAS  Google Scholar 

  6. Swiatek-Machado K, Kaminska B. STAT signaling in glioma cells. Adv Exp Med Biol. 2013;986:189–208.

    Article  PubMed  CAS  Google Scholar 

  7. Brantley EC, Benveniste EN. Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Mol Cancer Res. 2008;6(5):675–84.

    Article  PubMed  CAS  Google Scholar 

  8. Mizoguchi M, Betensky RA, Batchelor TT, Bernay DC, Louis DN, Nutt CL. Activation of STAT3, MAPK, and AKT in malignant astrocytic gliomas: correlation with EGFR status, tumor grade, and survival. J Neuropathol Exp Neurol. 2006;65(12):1181–8.

    Article  PubMed  CAS  Google Scholar 

  9. Kohanbash G, Okada H. MicroRNAs and STAT interplay. Semin Cancer Biol. 2012;22(1):70–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Kiu H, Nicholson SE. Biology and significance of the JAK/STAT signalling pathways. Growth Factors. 2012;30(2):88–106.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Senft C, Priester M, Polacin M, Schroder K, Seifert V, Kogel D, et al. Inhibition of the JAK-2/STAT3 signaling pathway impedes the migratory and invasive potential of human glioblastoma cells. J Neurooncol. 2011;101(3):393–403.

    Article  PubMed  CAS  Google Scholar 

  12. Ou Y, Ma L, Dong L, Ma L, Zhao Z, Ma L, et al. Migfilin protein promotes migration and invasion in human glioma through epidermal growth factor receptor-mediated phospholipase C-gamma and STAT3 protein signaling pathways. J Biol Chem. 2012;287(39):32394–405.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007;7(1):41–51.

    Article  PubMed  CAS  Google Scholar 

  14. Kang SH, Yu MO, Park KJ, Chi SG, Park DH, Chung YG. Activated STAT3 regulates hypoxia-induced angiogenesis and cell migration in human glioblastoma. Neurosurgery. 2010;67(5):1386–95 discussion 95.

    Article  PubMed  Google Scholar 

  15. Piperi C, Samaras V, Levidou G, Kavantzas N, Boviatsis E, Petraki K, et al. Prognostic significance of IL-8-STAT-3 pathway in astrocytomas: correlation with IL-6, VEGF and microvessel morphometry. Cytokine. 2011;55(3):387–95.

    Article  PubMed  CAS  Google Scholar 

  16. Birner P, Toumangelova-Uzeir K, Natchev S, Guentchev M. STAT3 tyrosine phosphorylation influences survival in glioblastoma. J Neurooncol. 2010;100(3):339–43.

    Article  PubMed  CAS  Google Scholar 

  17. Wang Y, Chen L, Bao Z, Li S, You G, Yan W, et al. Inhibition of STAT3 reverses alkylator resistance through modulation of the AKT and beta-catenin signaling pathways. Oncol Rep. 2011;26(5):1173–80.

    PubMed  Google Scholar 

  18. Abou-Ghazal M, Yang DS, Qiao W, Reina-Ortiz C, Wei J, Kong LY, et al. The incidence, correlation with tumor-infiltrating inflammation, and prognosis of phosphorylated STAT3 expression in human gliomas. Clin Cancer Res. 2008;14(24):8228–35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.

    Article  PubMed  Google Scholar 

  20. Dasgupta A, Raychaudhuri B, Haqqi T, Prayson R, Van Meir EG, Vogelbaum M, et al. Stat3 activation is required for the growth of U87 cell-derived tumours in mice. Eur J Cancer. 2009;45(4):677–84.

    Article  PubMed  CAS  Google Scholar 

  21. Priester M, Copanaki E, Vafaizadeh V, Hensel S, Bernreuther C, Glatzel M, et al. STAT3 silencing inhibits glioma single cell infiltration and tumor growth. Neuro Oncol. 2013;15(7):840–52.

    Article  PubMed  CAS  Google Scholar 

  22. Lin L, Hutzen B, Li PK, Ball S, Zuo M, DeAngelis S, et al. A novel small molecule, LLL12, inhibits STAT3 phosphorylation and activities and exhibits potent growth-suppressive activity in human cancer cells. Neoplasia. 2010;12(1):39–50.

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Loeffler S, Fayard B, Weis J, Weissenberger J. Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1. Int J Cancer. 2005;115(2):202–13.

    Article  PubMed  CAS  Google Scholar 

  24. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.

    Article  PubMed  CAS  Google Scholar 

  25. Tamura K, Aoyagi M, Ando N, Ogishima T, Wakimoto H, Yamamoto M, et al. Expansion of CD133-positive glioma cells in recurrent de novo glioblastomas after radiotherapy and chemotherapy. J Neurosurg. 2013;119(5):1145–55.

    Article  PubMed  Google Scholar 

  26. Zhang X, Zhang W, Mao XG, Zhen HN, Cao WD, Hu SJ. Targeting role of glioma stem cells for glioblastoma multiforme. Curr Med Chem. 2013;20(15):1974–84.

    Article  PubMed  CAS  Google Scholar 

  27. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488(7412):522–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. de la Iglesia N, Puram SV, Bonni A. STAT3 regulation of glioblastoma pathogenesis. Curr Mol Med. 2009;9(5):580–90.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Chen Z, Han ZC. STAT3: a critical transcription activator in angiogenesis. Med Res Rev. 2008;28(2):185–200.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by key Clinical Special Discipline Construction Program of Fujian, P.R.C.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Xiong Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, GS., Yang, LJ., Wang, XF. et al. STAT3 Tyr705 phosphorylation affects clinical outcome in patients with newly diagnosed supratentorial glioblastoma. Med Oncol 31, 924 (2014). https://doi.org/10.1007/s12032-014-0924-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0924-5

Keywords

Navigation