Abstract
Dysregulation of apoptosis plays a key role in carcinogenesis. This study was designed to investigate the association of apoptosis-related gene Caspase 8, Caspase 9 and Bcl-2 polymorphisms with papillary thyroid carcinoma (PTC) susceptibility. We undertook a case–control study of 118 patients and 213 controls to investigate the association between Caspase 8 (-652 6 N ins/del), Caspase 9 (-1263 A>G) and Bcl-2 (-938 C>A) polymorphisms and PTC susceptibility by polymerase chain reaction restriction–fragment length polymorphism and DNA sequencing methods. We further analyzed the distribution of genotype frequency, as well as the association of genotype with clinicopathological characteristics. Overall, no statistically significant association was observed in Caspase 8 (-652 6 N ins/del). Nevertheless, Caspase 9 -1263 GG genotype was at increased risk of PTC (P = 0.045; odds ratio (OR) = 1.12). Furthermore, GG genotype thyroid cancers were significantly more common in older patients than AA or AG genotypes PTC and in cases of advanced pathological stages. However, Bcl-2 -938 AA genotype demonstrated a protective effect in PTCs (P = 0.004; OR = 0.35). Polymorphism in Caspase 9 (-1263 A>G) was observed to be associated with susceptibility of PTC. However, Bcl-2 (-938 C>A) polymorphism indicated to play a protective role in susceptibility to PTC. Nevertheless, further investigation with a larger sample size is needed to support our results.
Similar content being viewed by others
References
Urken ML. Prognosis and management of invasive well-differentiated thyroid cancer. Otolaryngol Clin North Am. 2010;43(2):301–28. doi:10.1016/j.otc.2010.02.002. viii.
Johnson NA, Tublin ME. Postoperative surveillance of differentiated thyroid carcinoma: rationale, techniques, and controversies. Radiology. 2008;249(2):429–44. doi:10.1148/radiol.2492071313.
Kuma K, Matsuzuka F, Kobayashi A, Hirai K, Morita S, Miyauchi A, et al. Outcome of long standing solitary thyroid nodules. World J Surg. 1992;16(4):583–7. discussion 7–8.
Kuma K, Matsuzuka F, Yokozawa T, Miyauchi A, Sugawara M. Fate of untreated benign thyroid nodules: results of long-term follow-up. World J Surg. 1994;18(4):495–8. discussion 9.
Nikiforov YE. Is ionizing radiation responsible for the increasing incidence of thyroid cancer? Cancer. 2010;116(7):1626–8. doi:10.1002/cncr.24889.
Hegedus L. Clinical practice. The thyroid nodule. N Engl J Med. 2004;351(17):1764–71. doi:10.1056/NEJMcp031436.
Paschke R, Schmid KW, Gartner R, Mann K, Dralle H, Reiners C. Epidemiology, pathophysiology, guideline-adjusted diagnostics, and treatment of thyroid nodules. Med Klin (Munich). 2010;105(2):80–7. doi:10.1007/s00063-010-1011-9.
Dean DS, Gharib H. Epidemiology of thyroid nodules. Best Pract Res Clin Endocrinol Metab. 2008;22(6):901–11. doi:10.1016/j.beem.2008.09.019.
Marx J. Oncology. Recruiting the cell’s own guardian for cancer therapy. Science. 2007;315(5816):1211–3. doi:10.1126/science.315.5816.1211.
Nakagawa A, Shi Y, Kage-Nakadai E, Mitani S, Xue D. Caspase-dependent conversion of Dicer ribonuclease into a death-promoting deoxyribonuclease. Science. 2010;328(5976):327–34. doi:10.1126/science.1182374.
Shivapurkar N, Reddy J, Chaudhary PM, Gazdar AF. Apoptosis and lung cancer: a review. J Cell Biochem. 2003;88(5):885–98. doi:10.1002/jcb.10440.
Hajra KM, Liu JR. Apoptosome dysfunction in human cancer. Apoptosis. 2004;9(6):691–704. doi:10.1023/B:APPT.0000045786.98031.1d.
Wang W, Spitz MR, Yang H, Lu C, Stewart DJ, Wu X. Genetic variants in cell cycle control pathway confer susceptibility to lung cancer. Clin Cancer Res. 2007;13(19):5974–81. doi:10.1158/1078-0432.CCR-07-0113.
Ye Y, Yang H, Grossman HB, Dinney C, Wu X, Gu J. Genetic variants in cell cycle control pathway confer susceptibility to bladder cancer. Cancer. 2008;112(11):2467–74. doi:10.1002/cncr.23472.
Umar M, Upadhyay R, Kumar S, Ghoshal UC, Mittal B. CASP8-652 6 N del and CASP8 IVS12-19 G >A gene polymorphisms and susceptibility/prognosis of ESCC: a case control study in northern Indian population. J Surg Oncol. 2011;103(7):716–23. doi:10.1002/jso.21881.
Sun T, Gao Y, Tan W, Ma S, Shi Y, Yao J, et al. A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat Genet. 2007;39(5):605–13. doi:10.1038/ng2030.
Haiman CA, Garcia RR, Kolonel LN, Henderson BE, Wu AH, Le Marchand L. A promoter polymorphism in the CASP8 gene is not associated with cancer risk. Nat Genet. 2008;40(3):259–60. doi:10.1038/ng0308-259. author reply 60–1.
Gangwar R, Mandhani A, Mittal RD. Caspase 9 and caspase 8 gene polymorphisms and susceptibility to bladder cancer in north Indian population. Ann Surg Oncol. 2009;16(7):2028–34. doi:10.1245/s10434-009-0488-3.
Czabotar PE, Lessene G. Bcl-2 family proteins as therapeutic targets. Curr Pharm Des. 2010;16(28):3132–48.
Park BL, Kim LH, Cheong HS, Cho HY, Kim EM, Shin HD, et al. Identification of variants in cyclin D1 (CCND1) and B-Cell CLL/lymphoma 2 (BCL2). J Hum Genet. 2004;49(8):449–54. doi:10.1007/s10038-004-0173-0.
Bachmann HS, Otterbach F, Callies R, Nuckel H, Bau M, Schmid KW, et al. The AA genotype of the regulatory BCL2 promoter polymorphism (938 C>A) is associated with a favorable outcome in lymph node negative invasive breast cancer patients. Clin Cancer Res. 2007;13(19):5790–7. doi:10.1158/1078-0432.CCR-06-2673.
Edge SB. American Joint Committee on Cancer. AJCC cancer staging manual. 7th ed. New York: Springer; 2010.
Theodoropoulos GE, Michalopoulos NV, Panoussopoulos SG, Taka S, Gazouli M. Effects of caspase-9 and survivin gene polymorphisms in pancreatic cancer risk and tumor characteristics. Pancreas. 2010;39(7):976–80. doi:10.1097/MPA.0b013e3181d705d4.
Zhang N, Li X, Tao K, Jiang L, Ma T, Yan S, et al. BCL-2 (-938 C>A) polymorphism is associated with breast cancer susceptibility. BMC Med Genet. 2011;12:48. doi:10.1186/1471-2350-12-48.
Thatte U, Dahanukar S. Apoptosis: clinical relevance and pharmacological manipulation. Drugs. 1997;54(4):511–32.
Fennell DA. Caspase regulation in non-small cell lung cancer and its potential for therapeutic exploitation. Clin Cancer Res. 2005;11(6):2097–105. doi:10.1158/1078-0432.CCR-04-1482.
Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407(6805):770–6. doi:10.1038/35037710.
Kaufmann SH, Gores GJ. Apoptosis in cancer: cause and cure. Bioessays. 2000;22(11):1007–17. doi:10.1002/1521-1878(200011)22:11<1007:AID-BIES7>3.0.CO;2-4.
Nicholson DW, Thornberry NA. Caspases: killer proteases. Trends Biochem Sci. 1997;22(8):299–306.
Mathew R, White E. FLIPping the balance between apoptosis and proliferation in thyroid cancer. Clin Cancer Res. 2006;12(12):3648–51. doi:10.1158/1078-0432.CCR-06-0620.
Majid A, Tsoulakis O, Walewska R, Gesk S, Siebert R, Kennedy DB, et al. BCL2 expression in chronic lymphocytic leukemia: lack of association with the BCL2 938 A>C promoter single nucleotide polymorphism. Blood. 2008;111(2):874–7. doi:10.1182/blood-2007-07-098681.
Kaderi MA, Norberg M, Murray F, Merup M, Sundstrom C, Roos G, et al. The BCL-2 promoter (-938 C>A) polymorphism does not predict clinical outcome in chronic lymphocytic leukemia. Leukemia. 2008;22(2):339–43. doi:10.1038/sj.leu.2405042.
Zenz T, Benner A, Duhrsen U, Durig J, Dohner H, Siffert W, et al. BCL2-938 C>A polymorphism and disease progression in chronic lymphocytic leukemia. Leuk Lymphoma. 2009;50(11):1837–42. doi:10.3109/10428190903207530.
Twiddy D, Cain K. Caspase-9 cleavage, do you need it? Biochem J. 2007;405(1):e1–2. doi:10.1042/BJ20070617.
Park JY, Park JM, Jang JS, Choi JE, Kim KM, Cha SI, et al. Caspase 9 promoter polymorphisms and risk of primary lung cancer. Hum Mol Genet. 2006;15(12):1963–71. doi:10.1093/hmg/ddl119.
Pittman AM, Broderick P, Sullivan K, Fielding S, Webb E, Penegar S, et al. CASP8 variants D302H and -652 6 N ins/del do not influence the risk of colorectal cancer in the United Kingdom population. Br J Cancer. 2008;98(8):1434–6. doi:10.1038/sj.bjc.6604314.
Frank B, Rigas SH, Bermejo JL, Wiestler M, Wagner K, Hemminki K, et al. The CASP8-652 6 N del promoter polymorphism and breast cancer risk: a multicenter study. Breast Cancer Res Treat. 2008;111(1):139–44. doi:10.1007/s10549-007-9752-z.
Young RL, Korsmeyer SJ. A negative regulatory element in the bcl-2 5′-untranslated region inhibits expression from an upstream promoter. Mol Cell Biol. 1993;13(6):3686–97.
Nuckel H, Frey UH, Bau M, Sellmann L, Stanelle J, Durig J, et al. Association of a novel regulatory polymorphism (-938 C>A) in the BCL2 gene promoter with disease progression and survival in chronic lymphocytic leukemia. Blood. 2007;109(1):290–7. doi:10.1182/blood-2006-03-007567.
Hirata H, Hinoda Y, Nakajima K, Kikuno N, Suehiro Y, Tabatabai ZL, et al. The bcl2-938CC genotype has poor prognosis and lower survival in renal cancer. J Urol. 2009;182(2):721–7. doi:10.1016/j.juro.2009.03.081.
Lehnerdt GF, Franz P, Bankfalvi A, Grehl S, Kelava A, Nuckel H, et al. The regulatory BCL2 promoter polymorphism (-938 C>A) is associated with relapse and survival of patients with oropharyngeal squamous cell carcinoma. Ann Oncol. 2009;20(6):1094–9. doi:10.1093/annonc/mdn763.
Conflicts of interest
There are no any actual or potential conflicts of interest exist.
Author information
Authors and Affiliations
Corresponding author
Additional information
Ying-Xue Wang and Lei Zhao are contributed equally to this work.
Rights and permissions
About this article
Cite this article
Wang, YX., Zhao, L., Wang, XY. et al. Role of Caspase 8, Caspase 9 and Bcl-2 polymorphisms in papillary thyroid carcinoma risk in Han Chinese population. Med Oncol 29, 2445–2451 (2012). https://doi.org/10.1007/s12032-011-0121-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12032-011-0121-8