Skip to main content

Advertisement

Log in

High expression of S100A11 in pancreatic adenocarcinoma is an unfavorable prognostic marker

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

S100A11 is a member of S100 protein family, and our previous study showed that S100A11 is one of the up-regulated proteins that have not been reported to be associated with pancreatic carcinoma. The purpose of this study was to investigate the relation between S100A11 expression and the clinicopathological variables and clinical outcome in patients with pancreatic adenocarcinoma. Immunohistochemistry analysis was performed for S100A11 in 78 pairs of specimens of human pancreatic adenocarcinoma tissues and adjacent nontumorous tissues. The univariate and multivariate survival analyses were also performed to determine its prognostic significance. S100A11 expression in pancreatic adenocarcinoma (62/78) was significantly higher than that in the adjacent nontumorous tissues (19/78) (P = 0.000). High expression of S100A11 was associated with the lymph node metastasis and histological differentiation (P = 0.003 and 0.004, respectively). Univariate analysis showed that S100A11 expression was associated with poor prognosis (P = 0.0000). Multivariate analysis using the Cox regression model indicated that age ≥65 years, CA19-9 ≥1,000 U/ml and positive S100A11 were independent prognostic indicators of pancreatic adenocarcinoma (P = 0.002, 0.004 and 0.001, respectively). These results suggested that S100A11 might be a significant tumor marker for pancreatic adenocarcinoma and an unfavorable predictor for prognosis of patients who have undergone surgical resection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lee SE, et al. Clinical implications of immunohistochemically demonstrated lymph node micrometastasis in resectable pancreatic cancer. J Korean Med Sci. 2011;26(7):881–5.

    Article  PubMed  Google Scholar 

  2. Jemal A, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  3. Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362(17):1605–17.

    Article  PubMed  CAS  Google Scholar 

  4. Akdoqan M, et al. Extraordinarily elevated CA19-9 in benign conditions: a case report and review of the literature. Tumori. 2001;87(5):337–9.

    Google Scholar 

  5. Ni XG, et al. The clinical value of serum CEA, CA19-9, and CA242 in the diagnosis and prognosis of pancreatic cancer. Eur J Surg Oncol. 2005;31(2):164–9.

    Article  PubMed  CAS  Google Scholar 

  6. Duffy MJ. CA 19-9 as a marker for gastrointestinal cancers: a review. Ann Clin Biochem. 1998;35(Pt 3):364–70.

    PubMed  Google Scholar 

  7. Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001;33(7):637–68.

    Article  PubMed  CAS  Google Scholar 

  8. Heizmann CW, Fritz G, Schafer BW. S100 proteins: structure, functions and pathology. Front Biosci. 2002;7:d1356–68.

    Article  PubMed  CAS  Google Scholar 

  9. Marenholz I, Heizmann CW, Fritz G. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun. 2004;322(4):1111–22.

    Article  PubMed  CAS  Google Scholar 

  10. Rety S, et al. Structural basis of the Ca(2+)-dependent association between S100C (S100A11) and its target, the N-terminal part of annexin I. Structure. 2000;8(2):175–84.

    Article  PubMed  CAS  Google Scholar 

  11. Dempsey AC, Walsh MP, Shaw GS. Unmasking the annexin I interaction from the structure of Apo-S100A11. Structure. 2003;11(7):887–97.

    Article  PubMed  CAS  Google Scholar 

  12. Chen JH, et al. Comparative proteomic analysis of differentially expressed proteins in human pancreatic cancer tissue. Hepatobiliary Pancreat Dis Int. 2009;8(2):193–200.

    PubMed  CAS  Google Scholar 

  13. Sobin LH, Gospodarowicz MK, Wittekind C. International Union Against Cancer (UICC) TNM classification of malignant tumours. 7th ed. New York: Wiley-Liss; 2010.

    Google Scholar 

  14. Masunaga R, et al. Cyclooxygenase-2 expression correlates with tumor neovascularization and prognosis in human colorectal carcinoma patients. Clin Cancer Res. 2000;6(10):4064–8.

    PubMed  CAS  Google Scholar 

  15. Ji J, et al. Differential expression of S100 gene family in human esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 2004;130(8):480–6.

    Article  PubMed  CAS  Google Scholar 

  16. Oue N, et al. Gene expression profile of gastric carcinoma: identification of genes and tags potentially involved in invasion, metastasis, and carcinogenesis by serial analysis of gene expression. Cancer Res. 2004;64(7):2397–405.

    Article  PubMed  CAS  Google Scholar 

  17. Torres-Cabala C, et al. Differential expression of S100C in thyroid lesions. Int J Surg Pathol. 2004;12(2):107–15.

    Article  PubMed  CAS  Google Scholar 

  18. Finn SP, et al. Expression microarray analysis of papillary thyroid carcinoma and benign thyroid tissue: emphasis on the follicular variant and potential markers of malignancy. Virchows Arch. 2007;450(3):249–60.

    Article  PubMed  CAS  Google Scholar 

  19. Kanamori T, et al. Increased expression of calcium-binding protein S100 in human uterine smooth muscle tumours. Mol Hum Reprod. 2004;10(10):735–42.

    Article  PubMed  CAS  Google Scholar 

  20. Rust R, et al. High expression of calcium-binding proteins, S100A10, S100A11 and CALM2 in anaplastic large cell lymphoma. Br J Haematol. 2005;131(5):596–608.

    Article  PubMed  CAS  Google Scholar 

  21. Tanaka M, et al. Human calgizzarin; one colorectal cancer-related gene selected by a large scale random cDNA sequencing and northern blot analysis. Cancer Lett. 1995;89(2):195–200.

    Article  PubMed  CAS  Google Scholar 

  22. Stulik J, et al. Protein abundance alterations in matched sets of macroscopically normal colon mucosa and colorectal carcinoma. Electrophoresis. 1999;20(18):3638–46.

    Article  PubMed  CAS  Google Scholar 

  23. Flam F, et al. Identification of distinctive protein expression patterns in colorectal adenoma. Proteomics Clin Appl. 2010;4(1):60–70.

    Article  Google Scholar 

  24. Jung Y, et al. Clinical validation of colorectal cancer biomarkers identified from bioinformatics analysis of public expression data. Clin Cancer Res. 2011;17(4):700–9.

    Article  PubMed  CAS  Google Scholar 

  25. Schaefer KL, et al. Expression profiling of t(12; 22) positive clear cell sarcoma of soft tissue cell lines reveals characteristic up-regulation of potential new marker genes including ERBB3. Cancer Res. 2004;64(10):3395–405.

    Article  PubMed  CAS  Google Scholar 

  26. Tian T, et al. Determination of metastasis-associated proteins in non-small cell lung cancer by comparative proteomic analysis. Cancer Sci. 2007;98(8):1265–74.

    Article  PubMed  CAS  Google Scholar 

  27. Yao R, et al. The S100 proteins for screening and prognostic grading of bladder cancer. Histol Histopathol. 2007;22(9):1025–32.

    PubMed  CAS  Google Scholar 

  28. Tyburczy ME, et al. Novel proteins regulated by mTOR in subependymal giant cell astrocytomas of patients with tuberous sclerosis complex and new therapeutic implications. Am J Pathol. 2010;176(4):1878–90.

    Article  PubMed  CAS  Google Scholar 

  29. Liu XG, et al. Ca2+-binding protein S100A11: a novel diagnostic marker for breast carcinoma. Oncol Rep. 2010;23(5):1301–8.

    PubMed  CAS  Google Scholar 

  30. McKiernan E, et al. The role of S100 genes in breast cancer progression. Tumour Biol. 2011;32(3):441–50.

    Article  PubMed  CAS  Google Scholar 

  31. He H, et al. S100A11: diverse function and pathology corresponding to different target proteins. Cell Biochem Biophys. 2009;55(3):117–26.

    Article  PubMed  CAS  Google Scholar 

  32. Sakaguchi M, et al. Bifurcated converging pathways for high Ca2+-and TGFbeta-induced inhibition of growth of normal human keratinocytes. Proc Natl Acad Sci USA. 2005;102(39):13921–6.

    Article  PubMed  CAS  Google Scholar 

  33. Ohuchida K, et al. S100A11, a putative tumor suppressor gene, is overexpressed in pancreatic carcinogenesis. Clin Cancer Res. 2006;12(18):5417–22.

    Article  PubMed  CAS  Google Scholar 

  34. Jemal A, et al. Cancer statistics. CA Cancer J Clin. 2010;60(5):277–300.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Foundation for Talents in Six Fields of Jiangsu Province (No. 2006073), the Health Project of Jiangsu Province (H200923) and the Social Development Foundation of Nantong City (S2007028 and S2010012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-Zhou Ni.

Additional information

Ming-Bing Xiao and Feng Jiang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, MB., Jiang, F., Ni, WK. et al. High expression of S100A11 in pancreatic adenocarcinoma is an unfavorable prognostic marker. Med Oncol 29, 1886–1891 (2012). https://doi.org/10.1007/s12032-011-0058-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-011-0058-y

Keywords

Navigation