Skip to main content
Log in

Association of MicroRNAs with the Clinicopathologic Characteristics of Ependymoma

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The current management of ependymoma is wrought with limitations. Molecular classification is a promising development. MicroRNA (miRNA) deregulation is associated with human cancer and may be a means of molecular classification. The aim of our study is to investigate the association of miRNA expression with the clinicopathologic characteristics of ependymoma. Twenty-two samples were clinically annotated. Histologic features were reassessed and the expression of Ki-67, cyclin D1, and nestin was examined. The expression of 84 stem cell-related miRNAs was profiled. The ΔΔCT method and a Student’s t test were used to compute fold changes and P values, respectively. Our analysis revealed 24 statistically significant associations. We identified seven site-specific miRNAs. The pattern of expression was variable in each anatomic site. In addition, we identified six candidate recurrence biomarkers, all of which were overexpressed in recurrent cases. All three grade-related miRNAs were underexpressed in anaplastic samples. Two miRNAs each were underexpressed in samples immunoreactive to Ki-67 and cyclin D1. No miRNAs were differentially expressed between nestin-negative and nestin-positive samples. In conclusion, molecular alterations in ependymoma involve miRNAs. In our report, we review the level of evidence for the biomarker candidacy of identified miRNAs. Confirmatory studies are necessary to establish robust biomarkers for the clinical management of ependymoma. Proteins regulated by differentially expressed miRNAs are additional candidate biomarkers and may offer targets for novel therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bender R, Lange S (2001) Adjusting for multiple testing—when and how? J Clin Epidemiol 54(4):343–349

    Article  CAS  Google Scholar 

  • Braoudaki M, Lambrou GI, Giannikou K, Milionis V, Stefanaki K, Birks DK, Prodromou N, Kolialexi A, Kattamis A, Spiliopoulou CA, Tzortzatou-Stathopoulou F, Kanavakis E (2014) Microrna expression signatures predict patient progression and disease outcome in pediatric embryonal central nervous system neoplasms. J Hematol Oncol 7:96

    Article  Google Scholar 

  • Braoudaki M, Lambrou GI, Giannikou K, Papadodima SA, Lykoudi A, Stefanaki K, Sfakianos G, Kolialexi A, Tzortzatou-Stathopoulou F, Tzetis M, Kitsiou-Tzeli S, Kanavakis E (2016) ​miR-15a and miR-24-1 as putative prognostic microRNA signatures for pediatric pilocytic astrocytomas and ependymomas. Tumour Biol 37(7):​9887–9897

    Article  CAS  Google Scholar 

  • Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866

    Article  CAS  Google Scholar 

  • Chamberlain MC (2003) Ependymomas. Curr Neurol Neurosci Rep 3(3):193–199

    Article  Google Scholar 

  • Cole TJ (2015) Too many digits: the presentation of numerical data. Arch Dis Child 100(7):608–609

    Article  CAS  Google Scholar 

  • Costa FF, Bischof JM, Vanin EF, Lulla RR, Wang M, Sredni ST, Rajaram V, Bonaldo Mde F, Wang D, Goldman S, Tomita T, Soares MB (2011) Identification of microRNAs as potential prognostic markers in ependymoma. PLoS One 6(10):e25114

    Article  CAS  Google Scholar 

  • de Andrade FG, Marie SK, Uno M, Matushita H, Taricco MA, Teixeira MJ, Rosemberg S, Oba-Shinjo SM (2015) Immunohistochemical expression of cyclin D1 is higher in supratentorial ependymomas and predicts relapses in gross total resection cases. Neuropathology 35(4):312–323

    Article  Google Scholar 

  • Dong L, Li Y, Han C, Wang X, She L, Zhang H (2014) miRNA microarray reveals specific expression in the peripheral blood of glioblastoma patients. Int J Oncol 45(2):746–756

    Article  CAS  Google Scholar 

  • Eguía-Aguilar P, Gutiérrez-Castillo L, Pérezpeña-Díazconti M, García-Chéquer J, García-Quintana J, Chico-Ponce de León F, Gordillo-Domínguez L, Torres-García S, Arenas-Huertero F (2017) Expression of microRNAs in tumors of the central nervous system in pediatric patients in México Childs. Nerv Syst 33(12):2117–2128

    Article  Google Scholar 

  • Ellison DW, Kocak M, Figarella-Branger D, Felice G, Catherine G, Pietsch T, Frappaz D, Massimino M, Grill J, Boyett JM, Grundy RG (2011) Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. J Negat Results Biomed 10:7

    Article  Google Scholar 

  • Keller A, Leidinger P, Bauer A, ElSharawy A, Haas J, Backes C, Wendschlag A, Giese N, Tjaden C, Ott K, Werner J, Hackert T, Ruprecht K, Huwer H, Huebers J, Jacobs G, Rosenstiel P, Dommisch H, Schaefer A, Müller-Quernheim J, Wullich B, Keck B, Graf N, Reichrath J, Vogel B, Nebel A, Jager SU, Staehler P, Amarantos I, Boisguerin V, Staehler C, Beier M, Scheffler M, Büchler MW, Wischhusen J, Haeusler SF, Dietl J, Hofmann S, Lenhof HP, Schreiber S, Katus HA, Rottbauer W, Meder B, Hoheisel JD, Franke A, Meese E (2011) Toward the blood-borne miRNome of human diseases. Nat Methods 8(10):841–843

    Article  CAS  Google Scholar 

  • Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39(5):673–677

    Article  CAS  Google Scholar 

  • Lal A, Navarro F, Maher C, Maliszewski LE, Yan N, O’Day E, Chowdhury D, Dykxhoom DM, Tsai P, Hofman O, Becker KG, Gorospe M, Hide W, Lieberman J (2009) miR-24 inhibits cell proliferation by suppressing expression of E2F2, MYC and other cell cycle regulatory genes by binding to “seedless” 3′UTR microRNA recognition elements. Mol Cell 35(5):610–625

    Article  CAS  Google Scholar 

  • Lang MF, Yang S, Zhao C, Sun G, Murai K, Wu X, Wang J, Gao H, Brown CE, Liu X, Zhou J, Peng L, Rossi JJ, Shi Y (2012) Genome-wide profiling identified a set of miRNAs that are differentially expressed in glioblastoma stem cells and normal neural stem cells. PLoS One 7(4):e36248

    Article  CAS  Google Scholar 

  • Li M, Lee KF, Lu Y, Clarke I, Shih D, Eberhart C, Collins VP, Van Meter T, Picard D, Zhou L, Boutros PC, Modena P, Liang ML, Schere SW, Bouffet E, Rutka JT, Pomeroy SL, Lau CC, Taylor MD, Gajjar A, Dirks PB, Hawkins CE, Huang A (2009) Frequent amplification of a chr19q1341 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell 16(6):533–546

    Article  CAS  Google Scholar 

  • Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820

    Article  Google Scholar 

  • Lourdusamy A, Rahman R, Smith S, Grundy R (2015) microRNA network analysis identifies miR-29 cluster as key regulator of LAMA2 in ependymoma. Acta Neuropathol Commun 3:26

    Article  Google Scholar 

  • Margolin-Miller Y, Yanichkin N, Schichrur K, Toledano H, Ohali A, Tzaridis T, Michowitz S, Fichman-Horn S, Feinmesser M, Pfister SM, Witt H, Tabori U, Bouffet E, Ramaswamy V, Hawkins C, Taylor MD, Yaniv I, Avigad S (2017) Prognostic relevance of miR-124-3p and its target TP53INP1 in pediatric ependymoma. Genes Chromosom Cancer 56(8):639–650

    Article  CAS  Google Scholar 

  • Metellus P, Barrie M, Figarella-Branger D, Chinot O, Giorgi R, Gouvernet J, Jouvet A, Guyotat J (2007) Multicentric French study on adult intracranial ependymomas: prognostic factors analysis and therapeutic considerations from a cohort of 152 patients. Brain 130(5):1338–1349

    Article  Google Scholar 

  • Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL (2011) Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 11(8):558–572

    Article  CAS  Google Scholar 

  • Qiu S, Lin S, Hu D, Feng Y, Tan Y, Peng Y (2013) Interactions of miR-323/miR-326/miR-329 and miR-130a/miR-155/miR-210 as prognostic indicators for clinical outcome of glioblastoma patients. J Transl Med 11:10

    Article  CAS  Google Scholar 

  • Mishra PJ, Song B, Mishra PJ, Wang Y, Humeniuk R, Banerjee D, Merlino G, Ju J, Bertino JR (2009) MiR-24 tumor suppressor activity is regulated independent of p53 and through a target site polymorphism. PLoS One 4(12):e8445

    Article  Google Scholar 

  • Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, Magdaleno S, Dalton J, Calabrese C, Board J, MacDonald T, Rutka J, Guha A, Gajjar A, Curran T, Gilbertson RJ (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8(4):323–335

    Article  CAS  Google Scholar 

  • Wang BC, Ma J (2015) Role of microRNAs in malignant glioma. Chin Med J 128(9):1238–1244

    Article  Google Scholar 

  • Wolfsberger S, Fischer I, Höftberger R, Birner P, Slavc I, Dieckmann K, Czech T, Budka H, Hainfellner J (2004) Ki-67 immunolabeling index is an accurate predictor of outcome in patients with intracranial ependymoma. Am J Surg Pathol 28(7):914–920

    Article  Google Scholar 

  • Yu M, Xue Y, Zheng J, Liu X, Yu H, Liu L, Li Z, Liu Y (2017) Linc00152 promotes malignant progression of glioma stem cells by regulating miR-103a-3p/FEZF1/CDC25A pathway. Mol Cancer 16(1):110

    Article  Google Scholar 

  • Zakrzewska M, Fendler W, Zakrzewski K, Sikorska B, Grajkowska W, Dembowska-Bagińska B, Filipek I, Stefańczyk Ł, Liberski PP (2016) Altered microRNA expression is associated with tumor grade, molecular background and outcome in childhood infratentorial ependymoma. PLoS One 11(7):e0158464

    Article  Google Scholar 

  • Zamecnik J, Snuderl M, Eckschlager T, Chanova M, Hladikova M, Tichy M, Kodet R (2003) Pediatric intracranial Ependymomas: prognostic relevance of histological, immunohistochemical, and flow cytometric factors. Mod Pathol 16(10):980–991

    Article  Google Scholar 

  • Zawrocki A, Iżycka-Świeszewska E, Papierz W, Liberski PP, Zakrzewski K, Biernat W (2011) Analysis of the prognostic significance of selected morphological and immunohistochemical markers in ependymomas, with literature review. Folia Neuropathol 49(2):94–102

    PubMed  Google Scholar 

  • Zhang Y, Kim J, Mueller AC, Dey B, Yang Y, Lee DH, Hachmann J, Finderle S, Park DM, Christensen J, Schiff D, Purow B, Dutta A, Abounader R (2014) Multiple receptor tyrosine kinases converge on microRNA-134 to control KRAS, STAT5B, and glioblastoma. Cell Death Differ 21(5):720–734

    Article  Google Scholar 

  • Zhao H, Shen J, Hodges TR, Song R, Fuller GN, Heimberger AB (2017) Serum microRNA profiling in patients with glioblastoma: a survival analysis. Mol Cancer 16:59

    Article  Google Scholar 

Download references

Funding

This work was supported by the King Abdullah II Fund for Development and the Scientific Research Department of the King Abdullah II Design and Development Bureau (Grant Numbers 15, 16; 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoun Ahram.

Ethics declarations

The study protocol was approved by the Institutional Review Board of the King Hussein Cancer Center.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahram, M., Amarin, J.Z., Suradi, H.H. et al. Association of MicroRNAs with the Clinicopathologic Characteristics of Ependymoma. J Mol Neurosci 66, 307–313 (2018). https://doi.org/10.1007/s12031-018-1178-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-018-1178-z

Keywords

Navigation