Skip to main content

Advertisement

Log in

Low-Level Laser Therapy Ameliorates Disease Progression in a Mouse Model of Alzheimer’s Disease

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Low–level laser therapy (LLLT) has been used to treat inflammation, tissue healing, and repair processes. We recently reported that LLLT to the bone marrow (BM) led to proliferation of mesenchymal stem cells (MSCs) and their homing in the ischemic heart suggesting its role in regenerative medicine. The aim of the present study was to investigate the ability of LLLT to stimulate MSCs of autologous BM in order to affect neurological behavior and β-amyloid burden in progressive stages of Alzheimer’s disease (AD) mouse model. MSCs from wild-type mice stimulated with LLLT showed to increase their ability to maturate towards a monocyte lineage and to increase phagocytosis activity towards soluble amyloid beta (Aβ). Furthermore, weekly LLLT to BM of AD mice for 2 months, starting at 4 months of age (progressive stage of AD), improved cognitive capacity and spatial learning, as compared to sham-treated AD mice. Histology revealed a significant reduction in Aβ brain burden. Our results suggest the use of LLLT as a therapeutic application in progressive stages of AD and imply its role in mediating MSC therapy in brain amyloidogenic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez-Buylla A, Garcia-Verdugo JM, Mateo AS, Merchant-Larios H (1998) Primary neural precursors and intermitotic nuclear migration in the ventricular zone of adult canaries. J Neurosci 18(3):1020–1037

    CAS  PubMed  Google Scholar 

  • Assis L, Moretti AI, Abrahao TB, Cury V, Souza HP, Hamblin MR et al (2012) Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion. Lasers Surg Med 44(9):726–735

    Article  PubMed Central  PubMed  Google Scholar 

  • Avrahami L, Farfara D, Shaham-Kol M, Vassar R, Frenkel D, Eldar-Finkelman H (2013) Inhibition of glycogen synthase kinase-3 ameliorates beta-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: In vivo and in vitro studies. J Biol Chem 288(2):1295–1306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bevins RA, Besheer J (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study ‘recognition memory’. Nat Protoc 1(3):1306–1311

    Article  PubMed  Google Scholar 

  • Bibikova A, Oron U (1993) Promotion of muscle regeneration in the toad (Bufo viridis) gastrocnemius muscle by low-energy laser irradiation. Anat Rec 235(3):374–380

    Article  CAS  PubMed  Google Scholar 

  • Bibikova A, Belkin V, Oron U (1994) Enhancement of angiogenesis in regenerating gastrocnemius muscle of the toad (Bufo viridis) by low-energy laser irradiation. Anat Embryol (Berl) 190(6):597–602

    Article  CAS  Google Scholar 

  • Butovsky O, Kunis G, Koronyo-Hamaoui M, Schwartz M (2007) Selective ablation of bone marrow-derived dendritic cells increases amyloid plaques in a mouse Alzheimer’s disease model. Eur J Neurosci 26(2):413–416

    Article  PubMed  Google Scholar 

  • de Souza SC, Munin E, Alves LP, Salgado MA, Pacheco MT (2005) Low power laser radiation at 685 nm stimulates stem-cell proliferation rate in Dugesia tigrina during regeneration. J Photochem Photobiol B 80(3):203–207

    Article  PubMed  Google Scholar 

  • De Taboada L, Yu J, El-Amouri S, Gattoni-Celli S, Richieri S, McCarthy T et al (2011) Transcranial laser therapy attenuates amyloid-beta peptide neuropathology in amyloid-beta protein precursor transgenic mice. J Alzheimers Dis 23(3):521–535

    PubMed  Google Scholar 

  • Devine SM, Bartholomew AM, Mahmud N, Nelson M, Patil S, Hardy W et al (2001) Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 29(2):244–255

    Article  CAS  PubMed  Google Scholar 

  • Dube A, Bansal H, Gupta PK (2003) Modulation of macrophage structure and function by low level He-Ne laser irradiation. Photochem Photobiol Sci 2(8):851–855

    Article  CAS  PubMed  Google Scholar 

  • Farfara D, Trudler D, Segev-Amzaleg N, Galron R, Stein R, Frenkel D (2011) gamma-Secretase component presenilin is important for microglia beta-amyloid clearance. Ann Neurol 69(1):170–180

    Article  CAS  PubMed  Google Scholar 

  • Frenkel D, Puckett L, Petrovic S, Xia W, Chen G, Vega J et al (2008) A nasal proteosome adjuvant activates microglia and prevents amyloid deposition. Ann Neurol 63(5):591–601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frydman-Marom A, Levin A, Farfara D, Benromano T, Scherzer-Attali R, Peled S et al (2011) Orally administrated cinnamon extract reduces beta-amyloid oligomerization and corrects cognitive impairment in Alzheimer’s disease animal models. PLoS One 6(1):e16564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gavish L, Perez LS, Reissman P, Gertz SD (2008) Irradiation with 780 nm diode laser attenuates inflammatory cytokines but upregulates nitric oxide in lipopolysaccharide-stimulated macrophages: Implications for the prevention of aneurysm progression. Lasers Surg Med 40(5):371–378

    Article  PubMed  Google Scholar 

  • Hawkins D, Abrahamse H (2005) Biological effects of helium-neon laser irradiation on normal and wounded human skin fibroblasts. Photomed Laser Surg 23(3):251–259

    Article  CAS  PubMed  Google Scholar 

  • Ilic S, Leichliter S, Streeter J, Oron A, DeTaboada L, Oron U (2006) Effects of power densities, continuous and pulse frequencies, and number of sessions of low-level laser therapy on intact rat brain. Photomed Laser Surg 24(4):458–466

    Article  PubMed  Google Scholar 

  • Karu T (2007) Ten lectures on basic science of laser photherapy. Prima Books, Gragesberg Sweden

    Google Scholar 

  • Lampl Y, Zivin JA, Fisher M, Lew R, Welin L, Dahlof B et al (2007) Infrared laser therapy for ischemic stroke: a new treatment strategy: Results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1). Stroke 38(6):1843–1849

    Article  PubMed  Google Scholar 

  • Lapchak PA, Wei J, Zivin JA (2004) Transcranial infrared laser therapy improves clinical rating scores after embolic strokes in rabbits. Stroke 35(8):1985–1988

    Article  PubMed  Google Scholar 

  • Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R et al (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6(11):1282–1286

    Article  CAS  PubMed  Google Scholar 

  • Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11(1):173–189

    Article  CAS  PubMed  Google Scholar 

  • Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M et al (2007) Microglia in the adult brain arise from Ly-6ChiCCR2 + monocytes only under defined host conditions. Nat Neurosci 10(12):1544–1553

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa T, Furuya T, Itagaki S, Tohya Y, Takahashi E, Mikami T (1989) Establishment of a feline T-lymphoblastoid cell line highly sensitive for replication of feline immunodeficiency virus. Arch Virol 108(1–2):131–135

    Article  CAS  PubMed  Google Scholar 

  • Morgan D (2007) Amyloid, memory and neurogenesis. Exp Neurol 205(2):330–335

    Article  CAS  PubMed  Google Scholar 

  • Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ (2005) Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci U S A 102(50):18171–18176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Novoselova EG, Glushkova OV, Cherenkov DA, Chudnovsky VM, Fesenko EE (2006) Effects of low-power laser radiation on mice immunity. Photodermatol Photoimmunol Photomed 22(1):33–38

    Article  CAS  PubMed  Google Scholar 

  • Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J et al (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation. J Neurosci 26(40):10129–10140

    Article  CAS  PubMed  Google Scholar 

  • Oron U (2011) Light therapy and stem cells: a therapeutic intervention of the future. Interv Cardiol 3(6):627–629

    Article  Google Scholar 

  • Oron U, Yaakobi T, Oron A, Hayam G, Gepstein L, Rubin O et al (2001) Attenuation of infarct size in rats and dogs after myocardial infarction by low-energy laser irradiation. Lasers Surg Med 28(3):204–211

    Article  CAS  PubMed  Google Scholar 

  • Oron A, Oron U, Chen J, Eilam A, Zhang C, Sadeh M et al (2006) Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke 37(10):2620–2624

    Article  PubMed  Google Scholar 

  • Oron U, Ilic S, De Taboada L, Streeter J (2007) Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomed Laser Surg 25(3):180–182

    Article  CAS  PubMed  Google Scholar 

  • Reznikov KY (1991) Cell proliferation and cytogenesis in the mouse hippocampus. Adv Anat Embryol Cell Biol 122:1–74

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez JJ, Verkhratsky A (2011) Neurogenesis in Alzheimer’s disease. J Anat 219(1):78–89

    Article  PubMed Central  PubMed  Google Scholar 

  • Saura CA, Chen G, Malkani S, Choi SY, Takahashi RH, Zhang D et al (2005) Conditional inactivation of presenilin 1 prevents amyloid accumulation and temporarily rescues contextual and spatial working memory impairments in amyloid precursor protein transgenic mice. J Neurosci 25(29):6755–6764

    Article  CAS  PubMed  Google Scholar 

  • Scherzer-Attali R, Farfara D, Cooper I, Levin A, Ben-Romano T, Trudler D et al (2012) Naphthoquinone-tyrptophan reduces neurotoxic Abeta*56 levels and improves cognition in Alzheimer’s disease animal model. Neurobiol Dis 46(3):663–672

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6(11):1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Shefer G, Oron U, Irintchev A, Wernig A, Halevy O (2001) Skeletal muscle cell activation by low-energy laser irradiation: a role for the MAPK/ERK pathway. J Cell Physiol 187(1):73–80

    Article  CAS  PubMed  Google Scholar 

  • Shefer G, Partridge TA, Heslop L, Gross JG, Oron U, Halevy O (2002) Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. J Cell Sci 115(Pt 7):1461–1469

    CAS  PubMed  Google Scholar 

  • Simard AR, Rivest S (2006) Bone marrow stem cells to the rescue of Alzheimer’s disease. Med Sci (Paris) 22(10):822–824

    Article  Google Scholar 

  • Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49(4):489–502

    Article  CAS  PubMed  Google Scholar 

  • Tuby H, Maltz L, Oron U (2009) Implantation of low-level laser irradiated mesenchymal stem cells into the infarcted rat heart is associated with reduction in infarct size and enhanced angiogenesis. Photomed Laser Surg 27(2):227–233

    Article  CAS  PubMed  Google Scholar 

  • Tuby H, Maltz L, Oron U (2011) Induction of autologous mesenchymal stem cells in the bone marrow by low-level laser therapy has profound beneficial effects on the infarcted rat heart. Lasers Surg Med 43(5):401–409

    Article  PubMed  Google Scholar 

  • Tuby H, Hertzberg E, Maltz L, Oron U (2013) Long-term safety of low-level laser therapy at different power densities and single or multiple applications to the bone marrow in mice. Photomed Laser Surg 31(6):269–273

    Article  PubMed  Google Scholar 

  • Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the Alzheimer’s Association NIRG-11-205535 and ISF (to D.F.). There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri Oron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farfara, D., Tuby, H., Trudler, D. et al. Low-Level Laser Therapy Ameliorates Disease Progression in a Mouse Model of Alzheimer’s Disease. J Mol Neurosci 55, 430–436 (2015). https://doi.org/10.1007/s12031-014-0354-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0354-z

Keywords

Navigation