Skip to main content
Log in

The SDF-1 3'A Genetic Variation Is Correlated with Elevated Intra-tumor Tissue and Circulating Concentration of CXCL12 in Glial Tumors

A Study on Iranian Anaplastic Astrocytoma and Glioblastoma Multiforme Patients

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Immunological factors are important in pathogenesis of various malignancies, including neural cancers. The CXC chemokine CXCL12 is involved in the immune responses. Therefore, the aim of the present study was to investigate the association between tumor tissue and circulating concentrations of CXCL12 as well as its genetic variation at position +801 known as(the SDF-1 3'A), in Iranian patients suffering from malignant glial tumors. In this study, stereotactic tumor biopsy specimens in parallel with peripheral blood samples were collected from 123 patients and 189 healthy controls. The serum level of CXCL12 was measured by ELISA and tumor tissues were subjected to Western blotting for intra-tumor CXCL12 detection; we also employed PCR-RFLP to detect the SDF-1 3'A polymorphism. Demographic data were collected by a researcher-designed questionnaire. These results demonstrated a significant difference between the A/A, A/G, and G/G genotype and A and G alleles of polymorphisms at position +801 of CXCL12. We also indicated elevated levels of CXCL12 in circulation and tumor tissue obtained from in patients suffering from malignant glial tumors. Based upon the results of this investigation, we propose that CXCL12 and its SDF-1 3'A polymorphism play a fundamental part in the pathogenesis of malignant glial tumors. It is also noteworthy that CXCL12 could probably be utilized as a beneficial biological marker in the diagnosis of these tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Azin H, Vazirinejad R, Ahmadabadi BN, Khorramdelazad H, Zarandi ER, Arababadi MK et al (2011) The SDF-1 3'A genetic variation of the chemokine SDF-1alpha (CXCL12) in parallel with its increased circulating levels is associated with susceptibility to MS: a study on Iranian multiple sclerosis patients. J Mol Neurosci 29:29

    Google Scholar 

  • Bajetto A, Bonavia R, Barbero S, Piccioli P, Costa A, Florio T et al (1999) Glial and neuronal cells express functional chemokine receptor CXCR4 and its natural ligand stromal cell-derived factor 1. J Neurochem 73(6):2348–2357

    Article  PubMed  CAS  Google Scholar 

  • Bajetto A, Bonavia R, Barbero S, Florio T, Schettini G (2001a) Chemokines and their receptors in the central nervous system. Front Neuroendocrinol 22(3):147–184

    Article  PubMed  CAS  Google Scholar 

  • Bajetto A, Barbero S, Bonavia R, Piccioli P, Pirani P, Florio T et al (2001b) Stromal cell-derived factor-1alpha induces astrocyte proliferation through the activation of extracellular signal-regulated kinases 1/2 pathway. J Neurochem 77(5):1226–1236

    Article  PubMed  CAS  Google Scholar 

  • Bajetto A, Bonavia R, Barbero S, Schettini G (2002) Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. J Neurochem 82(6):1311–1329

    Article  PubMed  CAS  Google Scholar 

  • Barbero S, Bajetto A, Bonavia R, Porcile C, Piccioli P, Pirani P et al (2002) Expression of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1 in human brain tumors and their involvement in glial proliferation in vitro. Ann N Y Acad Sci 973:60–69

    Article  PubMed  CAS  Google Scholar 

  • Barbero S, Bonavia R, Bajetto A, Porcile C, Pirani P, Ravetti JL et al (2003) Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res 63(8):1969–1974

    PubMed  CAS  Google Scholar 

  • Burger JA, Peled A (2009) CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 23(1):43–52, Epub 2008 Nov 6

    Article  PubMed  CAS  Google Scholar 

  • Busillo JM, Benovic JL (2007) Regulation of CXCR4 signaling. Biochim Biophys Acta 1768(4):952–963, Epub 2006 Nov 10

    Article  PubMed  CAS  Google Scholar 

  • Christopherson K 2nd, Hromas R (2001) Chemokine regulation of normal and pathologic immune responses. Stem Cells 19(5):388–396

    Article  PubMed  CAS  Google Scholar 

  • Ehtesham M, Winston JA, Kabos P, Thompson RC (2006) CXCR4 expression mediates glioma cell invasiveness. Oncogene 25(19):2801–2806

    Article  PubMed  CAS  Google Scholar 

  • Fulton AM (2009) The chemokine receptors CXCR4 and CXCR3 in cancer. Curr Oncol Rep 11(2):125–131

    Article  PubMed  CAS  Google Scholar 

  • Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21(21):2683–2710

    Article  PubMed  CAS  Google Scholar 

  • Gonzalo JA, Lloyd CM, Peled A, Delaney T, Coyle AJ, Gutierrez-Ramos JC (2000) Critical involvement of the chemotactic axis CXCR4/stromal cell-derived factor-1 alpha in the inflammatory component of allergic airway disease. J Immunol 165(1):499–508

    PubMed  CAS  Google Scholar 

  • Hess DC, Borlongan CV (2008) Cell-based therapy in ischemic stroke. Expert Rev Neurother 8(8):1193–1201

    Article  PubMed  CAS  Google Scholar 

  • Kantele JM, Kurk S, Jutila MA (2000) Effects of continuous exposure to stromal cell-derived factor-1 alpha on T cell rolling and tight adhesion to monolayers of activated endothelial cells. J Immunol 164(10):5035–5040

    PubMed  CAS  Google Scholar 

  • Leonardi A (2002) Vernal keratoconjunctivitis: pathogenesis and treatment. Prog Retin Eye Res 21(3):319–339

    Article  PubMed  CAS  Google Scholar 

  • Li M, Ransohoff RM (2008) Multiple roles of chemokine CXCL12 in the central nervous system: a migration from immunology to neurobiology. Prog Neurobiol 84(2):116–131, Epub 2007 Nov 26

    Article  PubMed  CAS  Google Scholar 

  • Loetscher P, Gong JH, Dewald B, Baggiolini M, Clark-Lewis I (1998) N-terminal peptides of stromal cell-derived factor-1 with CXC chemokine receptor 4 agonist and antagonist activities. J Biol Chem 273(35):22279–22283

    Article  PubMed  CAS  Google Scholar 

  • Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK et al (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15(11):1311–1333

    Article  PubMed  CAS  Google Scholar 

  • Nanki T, Lipsky PE (2000) Cutting edge: stromal cell-derived factor-1 is a costimulator for CD4+ T cell activation. J Immunol 164(10):5010–5014

    PubMed  CAS  Google Scholar 

  • Oh JW, Drabik K, Kutsch O, Choi C, Tousson A, Benveniste EN (2001) CXC chemokine receptor 4 expression and function in human astroglioma cells. J Immunol 166(4):2695–2704

    PubMed  CAS  Google Scholar 

  • Pedeboscq S, L'Azou B, Liguoro D, Pometan JP, Cambar J (2007) Interindividual differences in anticancer drug cytotoxicity in primary human glioblastoma cells. Exp Toxicol Pathol 58(4):247–253, Epub 2006 Nov 22

    Article  PubMed  CAS  Google Scholar 

  • Peng SB, Peek V, Zhai Y, Paul DC, Lou Q, Xia X et al (2005) Akt activation, but not extracellular signal-regulated kinase activation, is required for SDF-1alpha/CXCR4-mediated migration of epitheloid carcinoma cells. Mol Cancer Res 3(4):227–236

    PubMed  CAS  Google Scholar 

  • Redjal N, Chan JA, Segal RA, Kung AL (2006) CXCR4 inhibition synergizes with cytotoxic chemotherapy in gliomas. Clin Cancer Res 12(22):6765–6771

    Article  PubMed  CAS  Google Scholar 

  • Rempel SA, Dudas S, Ge S, Gutierrez JA (2000) Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin Cancer Res 6(1):102–111

    PubMed  CAS  Google Scholar 

  • Robinson DS, Hamid Q, Jacobson M, Ying S, Kay AB, Durham SR (1993) Evidence for Th2-type T helper cell control of allergic disease in vivo. Springer Semin Immunopathol 15(1):17–27

    Article  PubMed  CAS  Google Scholar 

  • Rubin JB, Kung AL, Klein RS, Chan JA, Sun Y, Schmidt K et al (2003) A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci U S A 100(23):13513–13518, Epub 2003 Oct 31

    Article  PubMed  CAS  Google Scholar 

  • Sehgal A, Keener C, Boynton AL, Warrick J, Murphy GP (1998a) CXCR-4, a chemokine receptor, is overexpressed in and required for proliferation of glioblastoma tumor cells. J Surg Oncol 69(2):99–104

    Article  PubMed  CAS  Google Scholar 

  • Sehgal A, Ricks S, Boynton AL, Warrick J, Murphy GP (1998b) Molecular characterization of CXCR-4: a potential brain tumor-associated gene. J Surg Oncol 69(4):239–248

    Article  PubMed  CAS  Google Scholar 

  • Sozzani S, Luini W, Borsatti A, Polentarutti N, Zhou D, Piemonti L et al (1997) Receptor expression and responsiveness of human dendritic cells to a defined set of CC and CXC chemokines. J Immunol 159(4):1993–2000

    PubMed  CAS  Google Scholar 

  • Stevenson CB, Ehtesham M, McMillan KM, Valadez JG, Edgeworth ML, Price RR et al (2008) CXCR4 expression is elevated in glioblastoma multiforme and correlates with an increase in intensity and extent of peritumoral T2-weighted magnetic resonance imaging signal abnormalities. Neurosurgery 63(3):560–569, discussion 9–70

    Article  PubMed  Google Scholar 

  • Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507

    Article  PubMed  CAS  Google Scholar 

  • Xie K (2001) Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 12(4):375–391

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Larsen PH, Hao C, Yong VW (2002) CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem 277(51):49481–49487, Epub 2002 Oct 17

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all patients and healthy controls who participated in this research program. This project was financially supported by a grant from the Rafsanjan University of Medical Sciences.

Conflicts of interest

The authors of this declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamhossein Hassanshahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moosavi, S.R., Khorramdelazad, H., Amin, M. et al. The SDF-1 3'A Genetic Variation Is Correlated with Elevated Intra-tumor Tissue and Circulating Concentration of CXCL12 in Glial Tumors. J Mol Neurosci 50, 298–304 (2013). https://doi.org/10.1007/s12031-013-9954-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-9954-2

Keywords

Navigation