Skip to main content

Advertisement

Log in

The Expression of FBP1 after Traumatic Brain Injury and Its Role in Astrocyte Proliferation

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Far upstream element binding protein 1 (FBP1) has been identified as an upstream gene of p27kip1 (p27), which is a key regulator of mammalian cell cycle regulation and neurogenesis. To elucidate the expression and function of FBP1 in central nervous system lesion and repair, we performed a traumatic brain injury (TBI) model in adult rats. We observed that FBP1 protein level significantly reduced at day 3 after injury, and the downregulation of FBP1 was predominant in astrocytes, which were largely proliferated after injury. Furthermore, in vitro, overexpression of FBP1 was concomitant with the up-regulation of p27 and reduction of PCNA in LPS-induced astrocyte proliferation. These results suggest that a decreased level of FBP1 in brain is involved in the proliferation of glial cells after TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avigan MI, Strober B, Levens D (1990) A far upstream element stimulates c-myc expression in undifferentiated leukemia cells. J Biol Chem 265:18538–18545

    PubMed  CAS  Google Scholar 

  • Benton RL, Whittemore SR (2003) VEGF165 therapy exacerbates secondary damage following spinal cord injury. Neurochem Res 28:1693–1703

    Article  PubMed  CAS  Google Scholar 

  • Boonstra J (2003) Progression through the G1-phase of the on-going cell cycle. J Cell Biochem 90:244–252

    Article  PubMed  CAS  Google Scholar 

  • Brahmachari S, Fung YK, Pahan K (2006) Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide. J Neurosci 26:4930–4939

    Article  PubMed  CAS  Google Scholar 

  • Busch SA, Silver J (2007) The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 17:120–127

    Article  PubMed  CAS  Google Scholar 

  • Cernak I, Stoica B, Byrnes KR, Di Giovanni S, Faden AI (2005) Role of the cell cycle in the pathobiology of central nervous system trauma. Cell Cycle 4:1286–1293

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Cao X, Tao G, Cao Z, Wang S, Zhou F, Xie W, Zhao P, Zhang Z, Cui Z (2012) FOXJ2 expression in rat spinal cord after injury and its role in inflammation. J Mol Neurosci 47:158–165

    Article  PubMed  CAS  Google Scholar 

  • Chung HJ, Levens D (2005) c-myc expression: keep the noise down! Mol Cells 20:157–166

    PubMed  CAS  Google Scholar 

  • Chung HJ, Liu J, Dundr M, Nie Z, Sanford S, Levens D (2006) FBPs are calibrated molecular tools to adjust gene expression. Mol Cell Biol 26:6584–6597

    Article  PubMed  CAS  Google Scholar 

  • Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI (2003) Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol 53:454–468

    Article  PubMed  Google Scholar 

  • Di Giovanni S, Movsesyan V, Ahmed F, Cernak I, Schinelli S, Stoica B, Faden AI (2005) Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci USA 102:8333–8338

    Article  PubMed  Google Scholar 

  • Duncan R, Bazar L, Michelotti G, Tomonaga T, Krutzsch H, Avigan M, Levens D (1994) A sequence-specific, single-strand binding protein activates the far upstream element of c-myc and defines a new DNA-binding motif. Genes Dev 8:465–480

    Article  PubMed  CAS  Google Scholar 

  • Fillies T, Woltering M, Brandt B, Van Diest JP, Werkmeister R, Joos U, Buerger H (2007) Cell cycle regulating proteins p21 and p27 in prognosis of oral squamous cell carcinomas. Oncol Rep 17:355–359

    PubMed  CAS  Google Scholar 

  • Go HS, Shin CY, Lee SH, Jeon SJ, Kim KC, Choi CS, Ko KH (2009) Increased proliferation and gliogenesis of cultured rat neural progenitor cells by lipopolysaccharide-stimulated astrocytes. Neuroimmunomodulation 16:365–376

    Article  PubMed  CAS  Google Scholar 

  • He L, Liu J, Collins I, Sanford S, O'Connell B, Benham CJ, Levens D (2000) Loss of FBP function arrests cellular proliferation and extinguishes c-myc expression. EMBO J 19:1034–1044

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Takahashi A, Itoyama Y (2003) Cell cycle protein expression in proliferating microglia and astrocytes following transient global cerebral ischemia in the rat. Brain Res Bull 60:215–221

    Article  PubMed  CAS  Google Scholar 

  • Konigsmark BW (1970) Methods for the counting of neurons. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, New York, pp 315–340

    Chapter  Google Scholar 

  • Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21:375–378

    Article  PubMed  Google Scholar 

  • LaPlaca MC, Simon CM, Prado GR, Cullen DK (2007) CNS injury biomechanics and experimental models. Prog Brain Res 161:13–26

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Kouzine F, Nie Z, Chung HJ, Elisha-Feil Z, Weber A, Zhao K, Levens D (2006) The FUSE/FBP/FIR/TFIIH system is a molecular machine programming a pulse of c-myc expression. EMBO J 25:2119–2130

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Wang Y, Cheng C, Chen Y, Shi S, Qin J, Xiao F, Zhou D, Lu M, Lu Q et al (2010) A relationship between p27(kip1) and Skp2 after adult brain injury: implications for glial proliferation. J Neurotrauma 27:361–371

    Article  PubMed  Google Scholar 

  • McGraw J, Hiebert GW, Steeves JD (2001) Modulating astrogliosis after neurotrauma. J Neurosci Res 63:109–115

    Article  PubMed  CAS  Google Scholar 

  • Morris GF, Mathews MB (1989) Regulation of proliferating cell nuclear antigen during the cell cycle. J Biol Chem 264:13856–13864

    PubMed  CAS  Google Scholar 

  • Nortje J, Menon DK (2004) Traumatic brain injury: physiology, mechanisms, and outcome. Curr Opin Neurol 17:711–718

    Article  PubMed  Google Scholar 

  • Pelengaris S, Khan M (2003) The many faces of c-MYC. Arch Biochem Biophys 416:129–136

    Article  PubMed  CAS  Google Scholar 

  • Plesnila N, von Baumgarten L, Retiounskaia M, Engel D, Ardeshiri A, Zimmermann R, Hoffmann F, Landshamer S, Wagner E, Culmsee C (2007) Delayed neuronal death after brain trauma involves p53-dependent inhibition of NF-kappaB transcriptional activity. Cell Death Differ 14:1529–1541

    Article  PubMed  CAS  Google Scholar 

  • Rabenhorst U, Beinoraviciute-Kellner R, Brezniceanu ML, Joos S, Devens F, Lichter P, Rieker RJ, Trojan J, Chung HJ, Levens DL et al (2009) Overexpression of the far upstream element binding protein 1 in hepatocellular carcinoma is required for tumor growth. Hepatology 50:1121–1129

    Article  PubMed  CAS  Google Scholar 

  • Raghupathi R (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol 14:215–222

    Article  PubMed  Google Scholar 

  • Sgambato A, Cittadini A, Faraglia B, Weinstein IB (2000) Multiple functions of p27Kip1 and its alterations in tumor cells: a review. J Cell Physiol 183:18–27

    Article  PubMed  CAS  Google Scholar 

  • Tehranian R, Rose ME, Vagni V, Pickrell AM, Griffith RP, Liu H, Clark RS, Dixon CE, Kochanek PM, Graham SH (2008) Disruption of Bax protein prevents neuronal cell death but produces cognitive impairment in mice following traumatic brain injury. J Neurotrauma 25:755–767

    Article  PubMed  Google Scholar 

  • Tian DS, Yu ZY, Xie MJ, Bu BT, Witte OW, Wang W (2006) Suppression of astroglial scar formation and enhanced axonal regeneration associated with functional recovery in a spinal cord injury rat model by the cell cycle inhibitor olomoucine. J Neurosci Res 84:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Urrea C, Castellanos DA, Sagen J, Tsoulfas P, Bramlett HM, Dietrich WD (2007) Widespread cellular proliferation and focal neurogenesis after traumatic brain injury in the rat. Restor Neurol Neurosci 25:65–76

    PubMed  CAS  Google Scholar 

  • Walker PA, Shah SK, Harting MT, Cox CS Jr (2009) Progenitor cell therapies for traumatic brain injury: barriers and opportunities in translation. Dis Model Mech 2:23–38

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Avigan M, Norgren RB Jr (1998) FUSE-binding protein is developmentally regulated and is highly expressed in mouse and chicken embryonic brain. Neurosci Lett 252:191–194

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Shi W, Zhao W, Shao B, Yuan Q, Li C, Zhang S, Sun B, Wu Q, Chen J (2012) Changes in Pirh2 and p27kip1 expression following traumatic brain injury in adult rats. J Mol Neurosci 46:184–191

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Yang J, Shi W, Wu X, Shao B, Wu Q, Chen J, Ni L (2011) Upregulation of p21-activated Kinase 6 in rat brain cortex after traumatic brain injury. J Mol Histol 42:195–203

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Miskimins WK (2011) Far upstream element binding protein 1 activates translation of p27Kip1 mRNA through its internal ribosomal entry site. Int J Biochem Cell Biol 43:1641–1648

    Article  PubMed  CAS  Google Scholar 

  • Zweckberger K, Eros C, Zimmermann R, Kim SW, Engel D, Plesnila N (2006) Effect of early and delayed decompressive craniectomy on secondary brain damage after controlled cortical impact in mice. J Neurotrauma 23:1083–1093

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (grants numbers 81171139 and 812713681).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Additional information

Wei Zhao and Yong Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, W., Wang, Y., Shi, W. et al. The Expression of FBP1 after Traumatic Brain Injury and Its Role in Astrocyte Proliferation. J Mol Neurosci 51, 687–694 (2013). https://doi.org/10.1007/s12031-013-0049-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0049-x

Keywords

Navigation