Skip to main content
Log in

Age and Dark Rearing Bidirectionally Regulate the Level and Laminar Pattern of Expression of Abelson Interacting Protein 2 (Abi-2): a Novel Candidate Visual Cortical Plasticity Gene

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Electrophysiological studies indicate that cat visual cortical critical period neuronal plasticity peaks around 5 weeks and largely disappears by 20 weeks. Dark rearing slows this time course. Normal cats are more plastic than dark-reared cats at 5 weeks, but the opposite is true at 20 weeks. Thus, a stringent criterion for identifying genes controlling neuronal plasticity is that normal and dark rearing produce opposite direction differences in expression between young and older animals. Differential display polymerase chain reaction identified Abelson interacting protein 2 (Abi-2) as a candidate plasticity gene regulated according to this criterion. Western blotting showed bidirectional regulation of Abi-2 protein levels in cats and mice that was specific to visual cortex and did not occur in frontal cortex. Immunohistochemistry indicated developmental changes in Abi-2 laminar expression in cat visual cortex. Dark rearing altered laminar expression such that at 5 weeks, dark-reared cats were similar to 1-week normally reared cats, and at 20 weeks, dark-reared cats were similar to 5–10-week normally reared animals. The effect of dark rearing on both Abi-2 expression levels and laminar expression patterns was to slow the normal developmental process, the same effect seen on physiologically assessed plasticity in visual cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Antonini A, Stryker MP (1993) Rapid remodeling of axonal arbors in the visual cortex. Science 260:1819–1821

    Article  PubMed  CAS  Google Scholar 

  • Beaver CJ, Ji Q, Daw NW (2001) Layer differences in the effect of monocular vision in light- and dark-reared kittens. Vis Neurosci 18:811–820

    Article  PubMed  CAS  Google Scholar 

  • Courtney KD, Grove M, Vandongen H, Vandongen A, LaMantia AS, Pendergast AM (2000) Localization and phosphorylation of Abl-interactor proteins, Abi-1 and Abi-2, in the developing nervous system. Mol Cell Neurosci 16:244–257

    Article  PubMed  CAS  Google Scholar 

  • Cynader M, Mitchell DE (1980) Prolonged sensitivity to monocular deprivation in dark-reared cats. J Neurophysiol 43:1026–1040

    PubMed  CAS  Google Scholar 

  • Dai Z, Pendergast AM (1995) Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev 9:2569–2582

    Article  PubMed  CAS  Google Scholar 

  • Daw NW (2006) Visual development. Springer, New York

    Google Scholar 

  • Daw NW, Fox K, Sato H, Czepita D (1992) Critical period for monocular deprivation in the cat visual cortex. J Neurophysiol 67:197–202

    PubMed  CAS  Google Scholar 

  • Fagiolini M, Pizzorusso T, Berardi N, Domenici L, Maffei L (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res 34:709–720

    Article  PubMed  CAS  Google Scholar 

  • Fagiolini M, Katagiri H, Miyamoto H, Mori H, Grant SG, Mishina M, Hensch TK (2003) Separable features of visual cortical plasticity revealed by N-methyl-D-aspartate receptor 2A signaling. Proc Natl Acad Sci U S A 100:2854–2859

    Article  PubMed  CAS  Google Scholar 

  • Gordon JA, Stryker MP (1996) Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J Neurosci 16:3274–3286

    PubMed  CAS  Google Scholar 

  • Grove M, Demyanenko G, Echarri A, Zipfel PA, Quiroz ME, Rodriguiz RM, Playford M, Martensen SA, Robinson MR, Wetsel WC, Maness PF, Pendergast AM (2004) ABI2-deficient mice exhibit defective cell migration, aberrant dendritic spine morphogenesis, and deficits in learning and memory. Mol Cell Biol 24:10905–10922

    Article  PubMed  CAS  Google Scholar 

  • Guire ES, Lickey ME, Gordon B (1999) Critical period for the monocular deprivation effect in rats: assessment with sweep visually evoked potentials. J Neurophysiol 81:121–128

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN, LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci 278:377–409

    Article  PubMed  CAS  Google Scholar 

  • Imbert M, Buisseret P (1975) Receptive field characteristics and plastic properties of visual cortical cells in kittens reared with or without visual experience. Exp Brain Res 22:25–36

    Article  PubMed  CAS  Google Scholar 

  • LeVay S, Wiesel TN, Hubel DH (1980) The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol 191:1–51

    Article  PubMed  CAS  Google Scholar 

  • Luskin MB, Shatz CJ (1985a) Neurogenesis of the cat's primary visual cortex. J Comp Neurol 242:611–631

    Article  PubMed  CAS  Google Scholar 

  • Luskin MB, Shatz CJ (1985b) Studies of the earliest generated cells of the cat's visual cortex: cogeneration of subplate and marginal zones. J Neurosci 5:1062–1075

    PubMed  CAS  Google Scholar 

  • Mower GD (1991) The effect of dark rearing on the time course of the critical period in cat visual cortex. Brain Res Dev Brain Res 58:151–158

    Article  PubMed  CAS  Google Scholar 

  • Mower GD, Berry D, Burchfiel JL, Duffy FH (1981) Comparison of the effects of dark rearing and binocular suture on development and plasticity of cat visual cortex. Brain Res 220:255–267

    Article  PubMed  CAS  Google Scholar 

  • Mower GD, Caplan CJ, Christen WG, Duffy FH (1985) Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex. J Comp Neurol 235:448–466

    Article  PubMed  CAS  Google Scholar 

  • Sawtell NB, Frenkel MY, Philpot BD, Nakazawa K, Tonegawa S, Bear MF (2003) NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38:977–985

    Article  PubMed  CAS  Google Scholar 

  • Shatz CJ, Stryker MP (1978) Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. J Physiol 281:267–283

    PubMed  CAS  Google Scholar 

  • Trachtenberg JT, Trepel C, Stryker MP (2000) Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex. Science 287:2029–2032

    Article  PubMed  CAS  Google Scholar 

  • Xie MJ, Yagi H, Kuroda K, Wang CC, Komada M, Zhao H, Sakakibara A, Miyata T, Nagata KI, Oka Y, Iguchi T, Sato M (2013) WAVE2-Abi2 complex controls growth cone activity and regulates the multipolar-bipolar transition as well as the initiation of glia-guided migration. Cereb Cortex 23(6):1410–1423

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R01 016724.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George D. Mower.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C.B., Kiser, P.J., Zheng, Y.T. et al. Age and Dark Rearing Bidirectionally Regulate the Level and Laminar Pattern of Expression of Abelson Interacting Protein 2 (Abi-2): a Novel Candidate Visual Cortical Plasticity Gene. J Mol Neurosci 51, 647–654 (2013). https://doi.org/10.1007/s12031-013-0037-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0037-1

Keywords

Navigation