Skip to main content

Advertisement

Log in

Changes of Peroxisome Proliferator-Activated Receptor-γ on Crushed Rat Sciatic Nerves and Differentiated Primary Schwann Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Peroxisome proliferator-activated receptor-γ (PPAR-γ) has been found to play an essential role in cell proliferation, but whether it was involved in Schwann cells differentiation has never been studied. We have found in sciatic nerve injury that expression of PPAR-γ decreases mainly in Schwann cells, and it was also increased in differentiated Schwann cells. Further, activated PPAR-γ by the endogenous ligand 15 d-PGJ2 increased expressions of PPAR-γ level and Schwann cell differentiation, and this effect may be protected by its antagonist GDW9662. These results indicate that PPAR-γ could promote Schwann cell differentiation, which plays an important role in peripheral nerve injury and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SCs:

Schwann cells

c-AMP:

3′–5′-Cyclic adenosine monophosphate

PPAR-γ:

Peroxisome proliferator-activated receptor-γ

P0:

Myelin protein zero

15 d-PGJ2 :

15-Deoxy-Δ12,14-prostaglandin J2

CNS:

Central nervous system

PNS:

Peripheral nervous system

RT–PCR:

Reverse transcription–polymerase chain reaction

References

  • Abdelrahman M, Sivarajah A, Thiemermann C (2005) Beneficial effects of PPAR-gamma ligands in ischemia–reperfusion injury, inflammation and shock. Cardiovasc Res 65:772–781

    Article  PubMed  CAS  Google Scholar 

  • Auboeuf D, Rieusset J, Fajas L, Vallier P, Frering V, Riou JP, Staels B, Auwerx J, Laville M, Vidal H (1997) Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes 46:1319–1327

    Article  PubMed  CAS  Google Scholar 

  • Auwerx J (1999) PPARgamma, the ultimate thrifty gene. Diabetologia 42:1033–1049

    Article  PubMed  CAS  Google Scholar 

  • Berger J, Leibowitz MD, Doebber TW, Elbrecht A, Zhang B, Zhou G, Biswas C, Cullinan CA, Hayes NS, Li Y, Tanen M, Ventre J, Wu MS, Berger GD, Mosley R, Marquis R, Santini C, Sahoo SP, Tolman RL, Smith RG, Moller DE (1999) Novel peroxisome proliferator-activated receptor (PPAR) gamma and PPARdelta ligands produce distinct biological effects. J Biol Chem 274:6718–6725

    Article  PubMed  CAS  Google Scholar 

  • Brockes JP, Fields KL, Raff MC (1979) Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res 165:105–118

    Article  PubMed  CAS  Google Scholar 

  • Corton JC, Anderson SP, Stauber A (2000) Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators. Annu Rev Pharmacol Toxicol 40:491–518

    Article  PubMed  CAS  Google Scholar 

  • Desvergne B, Michalik L, Wahli W (2004) Be fit or be sick: peroxisome proliferator-activated receptors are down the road. Mol Endocrinol 18:1321–1332

    Article  PubMed  CAS  Google Scholar 

  • Escher P, Wahli W (2000) Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutat Res 448:121–138

    Article  PubMed  CAS  Google Scholar 

  • Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10:355–361

    Article  PubMed  CAS  Google Scholar 

  • Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, Najib J, Laville M, Fruchart JC, Deeb S, Vidal-Puig A, Flier J, Briggs MR, Staels B, Vidal H, Auwerx J (1997) The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem 272:18779–18789

    Article  PubMed  CAS  Google Scholar 

  • Fajas L, Fruchart JC, Auwerx J (1998) PPARgamma3 mRNA: a distinct PPARgamma mRNA subtype transcribed from an independent promoter. FEBS Lett 438:55–60

    Article  PubMed  CAS  Google Scholar 

  • Fawcett JW, Keynes RJ (1990) Peripheral nerve regeneration. Annu Rev Neurosci 13:43–60

    Article  PubMed  CAS  Google Scholar 

  • Ferruzzi P, Ceni E, Tarocchi M, Grappone C, Milani S, Galli A, Fiorelli G, Serio M, Mannelli M (2005) Thiazolidinediones inhibit growth and invasiveness of the human adrenocortical cancer cell line H295R. J Clin Endocrinol Metab 90:1332–1339

    Article  PubMed  CAS  Google Scholar 

  • Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM (1995) 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83:803–812

    Article  PubMed  CAS  Google Scholar 

  • Fu SY, Gordon T (1997) The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol 14:67–116

    Article  PubMed  CAS  Google Scholar 

  • Han S, Sidell N, Fisher PB, Roman J (2004) Up-regulation of p21 gene expression by peroxisome proliferator-activated receptor gamma in human lung carcinoma cells. Clin Cancer Res 10:1911–1919

    Article  PubMed  CAS  Google Scholar 

  • Heinen A, Kremer D, Gottle P, Kruse F, Hasse B, Lehmann H, Hartung HP, Kury P (2008) The cyclin-dependent kinase inhibitor p57kip2 is a negative regulator of Schwann cell differentiation and in vitro myelination. Proc Natl Acad Sci USA 105:8748–8753

    Article  PubMed  CAS  Google Scholar 

  • Hihi AK, Michalik L, Wahli W (2002) PPARs: transcriptional effectors of fatty acids and their derivatives. Cell Mol Life Sci 59:790–798

    Article  PubMed  CAS  Google Scholar 

  • Huang JT, Welch JS, Ricote M, Binder CJ, Willson TM, Kelly C, Witztum JL, Funk CD, Conrad D, Glass CK (1999) Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature 400:378–382

    Article  PubMed  CAS  Google Scholar 

  • Hunter JG, van Delft MF, Rachubinski RA, Capone JP (2001) Peroxisome proliferator-activated receptor gamma ligands differentially modulate muscle cell differentiation and MyoD gene expression via peroxisome proliferator-activated receptor gamma-dependent and -independent pathways. J Biol Chem 276:38297–38306

    PubMed  CAS  Google Scholar 

  • Jackson SM, Parhami F, Xi XP, Berliner JA, Hsueh WA, Law RE, Demer LL (1999) Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyte–endothelial cell interaction. Arterioscler Thromb Vasc Biol 19:2094–2104

    Article  PubMed  CAS  Google Scholar 

  • Ji, Y, Tao T, Cheng C, Yang H, Wang Y, Yang J, Liu H, He X, Wang H, Shen A (2010) SSeCKS is a suppressor in Schwann cell differentiation and myelination. Neurochem Res 35, 219–226

    Google Scholar 

  • Jung KM, Park KS, Oh JH, Jung SY, Yang KH, Song YS, Son DJ, Park YH, Yun YP, Lee MK, Oh KW, Hong JT (2003) Activation of p38 mitogen-activated protein kinase and activator protein-1 during the promotion of neurite extension of PC-12 cells by 15-deoxy-delta12,14-prostaglandin J2. Mol Pharmacol 63:607–616

    Article  PubMed  CAS  Google Scholar 

  • Kersten S, Desvergne B, Wahli W (2000) Roles of PPARs in health and disease. Nature 405:421–424

    Article  PubMed  CAS  Google Scholar 

  • Kliewer SA, Forman BM, Blumberg B, Ong ES, Borgmeyer U, Mangelsdorf DJ, Umesono K, Evans RM (1994) Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci U S A 91:7355–7359

    Article  PubMed  CAS  Google Scholar 

  • Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83:813–819

    Article  PubMed  CAS  Google Scholar 

  • Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, Lehmann JM (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci USA 94:4318–4323

    Article  PubMed  CAS  Google Scholar 

  • Kruszynska YT, Mukherjee R, Jow L, Dana S, Paterniti JR, Olefsky JM (1998) Skeletal muscle peroxisome proliferator-activated receptor-gamma expression in obesity and non-insulin-dependent diabetes mellitus. J Clin Invest 101:543–548

    Article  PubMed  CAS  Google Scholar 

  • Lecka-Czernik B, Moerman EJ, Grant DF, Lehmann JM, Manolagas SC, Jilka RL (2002) Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology 143:2376–2384

    Article  PubMed  CAS  Google Scholar 

  • Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 270:12953–12956

    Article  PubMed  CAS  Google Scholar 

  • Lowell BB (1999) PPARgamma: an essential regulator of adipogenesis and modulator of fat cell function. Cell 99:239–242

    Article  PubMed  CAS  Google Scholar 

  • Marcus SL, Miyata KS, Zhang B, Subramani S, Rachubinski RA, Capone JP (1993) Diverse peroxisome proliferator-activated receptors bind to the peroxisome proliferator-responsive elements of the rat hydratase/dehydrogenase and fatty acyl-CoA oxidase genes but differentially induce expression. Proc Natl Acad Sci USA 90:5723–5727

    Article  PubMed  CAS  Google Scholar 

  • Mathon NF, Malcolm DS, Harrisingh MC, Cheng L, Lloyd AC (2001) Lack of replicative senescence in normal rodent glia. Science 291:872–875

    Article  PubMed  CAS  Google Scholar 

  • Morgan L, Jessen KR, Mirsky R (1991) The effects of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (04+) to a myelin phenotype (P0+, GFAP−, N-CAM−, NGF-receptor−) depends on growth inhibition. J Cell Biol 112:457–467

    Article  PubMed  CAS  Google Scholar 

  • Moya-Camarena SY, Van den Heuvel JP, Belury MA (1999) Conjugated linoleic acid activates peroxisome proliferator-activated receptor alpha and beta subtypes but does not induce hepatic peroxisome proliferation in Sprague–Dawley rats. Biochim Biophys Acta 1436:331–342

    PubMed  CAS  Google Scholar 

  • Mukherjee R, Jow L, Croston GE, Paterniti JR Jr (1997) Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARgamma2 versus PPARgamma1 and activation with retinoid X receptor agonists and antagonists. J Biol Chem 272:8071–8076

    Article  PubMed  CAS  Google Scholar 

  • Murphy GJ, Holder JC (2000) PPAR-gamma agonists: therapeutic role in diabetes, inflammation and cancer. Trends Pharmacol Sci 21:469–474

    Article  PubMed  CAS  Google Scholar 

  • Nosjean O, Boutin JA (2002) Natural ligands of PPARgamma: are prostaglandin J(2) derivatives really playing the part? Cell Signal 14:573–583

    Article  PubMed  CAS  Google Scholar 

  • Park KS, Ciaraldi TP, Lindgren K, Abrams-Carter L, Mudaliar S, Nikoulina SE, Tufari SR, Veerkamp JH, Vidal-Puig A, Henry RR (1998) Troglitazone effects on gene expression in human skeletal muscle of type II diabetes involve up-regulation of peroxisome proliferator-activated receptor-gamma. J Clin Endocrinol Metab 83:2830–2835

    Article  PubMed  CAS  Google Scholar 

  • Park KS, Lee RD, Kang SK, Han SY, Park KL, Yang KH, Song YS, Park HJ, Lee YM, Yun YP, Oh KW, Kim DJ, Yun YW, Hwang SJ, Lee SE, Hong JT (2004) Neuronal differentiation of embryonic midbrain cells by upregulation of peroxisome proliferator-activated receptor-gamma via the JNK-dependent pathway. Exp Cell Res 297:424–433

    Article  PubMed  CAS  Google Scholar 

  • Satoh T, Toyoda M, Hoshino H, Monden T, Yamada M, Shimizu H, Miyamoto K, Mori M (2002) Activation of peroxisome proliferator-activated receptor-gamma stimulates the growth arrest and DNA-damage inducible 153 gene in non-small cell lung carcinoma cells. Oncogene 21:2171–2180

    Article  PubMed  CAS  Google Scholar 

  • Seddon HJ, Medawar PB, Smith H (1943) Rate of regeneration of peripheral nerves in man. J Physiol 102:191–215

    PubMed  CAS  Google Scholar 

  • Son YJ, Thompson WJ (1995) Schwann cell processes guide regeneration of peripheral axons. Neuron 14:125–132

    Article  PubMed  CAS  Google Scholar 

  • Spiegelman BM (1998) PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47:507–514

    Article  PubMed  CAS  Google Scholar 

  • Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79:1147–1156

    Article  PubMed  CAS  Google Scholar 

  • Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM (1998) PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93:241–252

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi S, Ogasawara S, Mizukami H, Yajima N, Wada R, Sugawara A, Yagihashi S (2008) Correction of protein kinase C activity and macrophage migration in peripheral nerve by pioglitazone, peroxisome proliferator activated-gamma-ligand, in insulin-deficient diabetic rats. J Neurochem 104:491–499

    PubMed  CAS  Google Scholar 

  • Yoon C, Korade Z, Carter BD (2008) Protein kinase A-induced phosphorylation of the p65 subunit of nuclear factor-kappaB promotes Schwann cell differentiation into a myelinating phenotype. J Neurosci 28:3738–3746

    Article  PubMed  CAS  Google Scholar 

  • Yu K, Bayona W, Kallen CB, Harding HP, Ravera CP, McMahon G, Brown M, Lazar MA (1995) Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J Biol Chem 270:23975–23983

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Liu F, Yan M, Ji H, Hu L, Li X, Qian J, He X, Zhang L, Shen A, Cheng C (2010) Peroxisome proliferator-activated receptor-gamma agonists suppress iNOS expression induced by LPS in rat primary Schwann cells. J Neuroimmunol 218(1–2):36–47

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81171743), the Natural Science Foundation of Jiangsu Province (No. BK2009161 and No. BK2010169), the Natural Science Foundation of Jiangsu Colleges and Universities Grant (09KJD310005), and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Liu.

Additional information

Yi Cao and Qiuhong Wang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., Wang, Q., Zhou, Z. et al. Changes of Peroxisome Proliferator-Activated Receptor-γ on Crushed Rat Sciatic Nerves and Differentiated Primary Schwann Cells. J Mol Neurosci 47, 380–388 (2012). https://doi.org/10.1007/s12031-011-9662-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9662-8

Keywords

Navigation