Skip to main content
Log in

Superhydrophobic Properties of Nanostructured–Microstructured Porous Silicon for Improved Surface-Based Bioanalysis

  • Published:
NanoBiotechnology

Abstract

Wettability is a fundamental property of a solid surface, which plays important roles in many industrial applications. The possibility to create well-controlled nonwetting states on silicon surfaces without photolithography-based processing can bring many advantages in the biotechnology and microfluidics areas. In this paper, superhydrophobic properties of macroporous–nanoporous structured silicon are reported. The superhydrophobic porous silicon layers are prepared by electrochemical etching of bulk crystalline silicon wafers. Altered anodization conditions provide surfaces with varying pore morphologies, yielding different wetting properties, ranging from highly wetting (nanoporous morphologies) to water-repellent surfaces (macroporous morphologies). Subsequent surface modification with a fluorocarbon coupling agent can further improve nonwetting properties and stabilize the surface for a long term. Contact angles as high as 176° were achieved on macroporous silicon and superhydrophobicity was maintained for several months without degradation. The porous surfaces have proven to be a very attractive substrate for protein microarrays. Fluorescence-based assay of immunoglobulin G in plasma is reported with a limit of detection of 1 pM, a spot size of 50 μm, and an array density of 15,625 spots per square centimeter. Macroporous surfaces have also been developed for matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications, where the intrinsic hydrophobic surface properties confine the deposited sample to MALDI spots of less than 200 μm with well-defined MALDI crystals, providing a high-sensitivity readout. Furthermore, a superhydrophobic MALDI-TOF MS target anchor chip composed of nonporous anchor points surrounded by superhydrophobic porous areas for sample deposition and on anchor point confinement is reported. Such anchor chips allowed localized crystallization of large sample volumes (5 μL) improving the hydrophobic spot confinement strategy in terms of final MALDI crystal localization and readout sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shang HM, Wang Y, et al. Thin Solid Films. 2005;472(1–2):37–43.

    Article  ADS  CAS  Google Scholar 

  2. Sun T, Feng L, et al. Acc Chem Res. 2005;38:644.

    Article  PubMed  CAS  Google Scholar 

  3. Jiang Y, Wang Z, et al. Langmuir. 2005;21(5):1986–90.

    Article  PubMed  CAS  Google Scholar 

  4. Jiang L, Zhao Y, et al. Angew Chem Int Ed. 2004;43(33):4338–41.

    Article  CAS  Google Scholar 

  5. Han JT, Lee DH, et al. JACS. 2004;126(15):4796–7.

    Article  CAS  Google Scholar 

  6. Acatay K, Simsek E, et al. Angew Chem Int Ed. 2004;43(39):5210–3.

    Article  CAS  Google Scholar 

  7. Tadanaga K, Kitamuro K, et al. J Sol-gel Sci and Technol. 2003;26(1/2/3):705–8.

    Article  CAS  Google Scholar 

  8. Lau KKS, Bico J, et al. Nano Let. 2003;3(12):1701–5.

    Article  ADS  CAS  Google Scholar 

  9. Shirtcliffe NJ, McHale G, et al. Langmuir. 2003;19(14):5626–31.

    Article  CAS  Google Scholar 

  10. Feng L, Song Y, et al. Angew Chem Int Ed. 2003;42(7):800–2.

    Article  CAS  Google Scholar 

  11. Erbil HY, Demirel AL, et al. Science. 2003;299(5611):1377–80.

    Article  PubMed  CAS  Google Scholar 

  12. Wenzel RN. Ind Eng Chemistry. 1936;28:988–94.

    Article  CAS  Google Scholar 

  13. Cassie ABD, Baxter S. Trans Faraday Soc. 1944;40:546–51.

    Article  CAS  Google Scholar 

  14. Lafuma A, Quere D. Nat Mat. 2003;2(7):457–60.

    Article  CAS  Google Scholar 

  15. Patankar NA. Langmuir. 2004;20(17):7097–102.

    Article  PubMed  CAS  Google Scholar 

  16. Wu Y, et al. Chem Vap Deposition. 2002;8:47–50.

    Article  Google Scholar 

  17. Youngblood JP, et al. Macromolecules. 1999;32:6800–6.

    Article  ADS  CAS  Google Scholar 

  18. Chen W, et al. Langmuir. 1999;15:3395–9.

    Article  CAS  Google Scholar 

  19. Li Y, Cai W, et al. J Colloid Interface Sci. 2005;287(2):634–9.

    Article  PubMed  CAS  Google Scholar 

  20. Shiu J-Y, Kuo C-W, et al. Chem Mater. 2004;16(4):561–4.

    Article  ADS  CAS  Google Scholar 

  21. Öner D, McCarthy TJ. Langmuir. 2000;16:7777–82.

    Article  Google Scholar 

  22. Chang-Soo L, et al. Biosens Bioelectron. 2003;18:437–44.

    Article  Google Scholar 

  23. Fuerstner R, Barthlott W, et al. Langmuir. 2005;21(3):956–61.

    Article  CAS  Google Scholar 

  24. Ren S, Yang S, et al. Surf Sci. 2003;546(2–3):64–74.

    Article  ADS  CAS  Google Scholar 

  25. Li M, Zhai J, et al. J Phys Chem, B. 2003;107(37):9954–7.

    Article  CAS  Google Scholar 

  26. Wu Y, Sugimura H, et al. Chem Vap Depos. 2002;8(2):47–50.

    Article  Google Scholar 

  27. Ressine A, Finnskog D, et al. In: Jensen KF, Han J, et al, editors. Proceedings of microTAS 2005 Conference vol. 1. San Diego: TRF; 2005. p. 256–8.

    Google Scholar 

  28. Cao M, Song X, et al. J Phys Chem B. 2006;110(26):13072–5.

    Article  PubMed  CAS  Google Scholar 

  29. Ressine A, Finnskog D. NanoBiotechnology. 2005;1:93–104.

    Article  CAS  Google Scholar 

  30. Schibuichi S, et al. J Phys Chem. 1996;100:19512–7.

    Article  Google Scholar 

  31. Nosonovsky M, Bhushan B. Microsys Technol. 2005;11(7):535–49.

    Article  CAS  Google Scholar 

  32. Bico J, Thiele U, et al. Colloids Surf, A. 2002;206(1–3):41–6.

    Article  CAS  Google Scholar 

  33. Gao X, Jiang L. Nature. 2004;432(7013):36.

    Article  PubMed  ADS  CAS  Google Scholar 

  34. Cullis AG, Canham LT, et al. J Appl Phys. 1997;82(3):909–65.

    Article  ADS  CAS  Google Scholar 

  35. Dehlinger G, et al. Science. 2000;290:2277–80.

    Article  PubMed  CAS  Google Scholar 

  36. Omrane A, Santesson S, et al. Lab Chip. 2004;4(4):287–9.

    Article  PubMed  CAS  Google Scholar 

  37. Blossey R, Bosio A. Langmuir. 2002;18:2952–4.

    Article  CAS  Google Scholar 

  38. Deegan RD, Bakajin O, et al. Phy Rev E. 2000;62:756–65.

    Article  ADS  CAS  Google Scholar 

  39. Deegan RD, et al. Nature. 1997;389:827–9.

    Article  ADS  CAS  Google Scholar 

  40. Ekstrom S, Ericsson D, et al. Anal Chem. 2001;73(2):214–9.

    Article  PubMed  CAS  Google Scholar 

  41. Bhattacharya SH, et al. Anal Chem. 2002;74:2228–31.

    Article  PubMed  CAS  Google Scholar 

  42. Laiko VV, et al. Rapid Commun Mass Spectrom. 2002;16:1737–42.

    Article  PubMed  CAS  Google Scholar 

  43. Kruse RA, et al. Anal Chem. 2001;73:3639–45.

    Article  PubMed  CAS  Google Scholar 

  44. Kruse RA, et al. J Mass Spectrom. 2001;36:1317–22.

    Article  PubMed  CAS  Google Scholar 

  45. Miliotis T, et al. Rapid Commun Mass Spectrom. 2002;16:117–26.

    Article  PubMed  CAS  Google Scholar 

  46. Schurenberg M, Luebbert C, et al. Anal Chem. 2000;72:33436–42.

    Google Scholar 

  47. Ressine A, Auzelyte V, et al. Nucl Instrum Methods Phys Res B. 2006;249:715–8.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was kindly supported by the SWEGENE, the Swedish Research Council, the Wallenberg Foundation, the Crafoord Foundation, the Carl Trygger Foundation, and the Royal Physiographic Society in Lund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anton Ressine or Thomas Laurell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ressine, A., Finnskog, D., Marko-Varga, G. et al. Superhydrophobic Properties of Nanostructured–Microstructured Porous Silicon for Improved Surface-Based Bioanalysis. Nanobiotechnol 4, 18–27 (2008). https://doi.org/10.1007/s12030-008-9012-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12030-008-9012-2

Keywords

Navigation