Skip to main content
Log in

Common Data Elements for Disorders of Consciousness: Recommendations from the Electrophysiology Working Group

  • Common Data Elements for Disorders of Consciousness
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Electroencephalography (EEG) has long been recognized as an important tool in the investigation of disorders of consciousness (DoC). From inspection of the raw EEG to the implementation of quantitative EEG, and more recently in the use of perturbed EEG, it is paramount to providing accurate diagnostic and prognostic information in the care of patients with DoC. However, a nomenclature for variables that establishes a convention for naming, defining, and structuring data for clinical research variables currently is lacking. As such, the Neurocritical Care Society’s Curing Coma Campaign convened nine working groups composed of experts in the field to construct common data elements (CDEs) to provide recommendations for DoC, with the main goal of facilitating data collection and standardization of reporting. This article summarizes the recommendations of the electrophysiology DoC working group.

Methods

After assessing previously published pertinent CDEs, we developed new CDEs and categorized them into “disease core,” “basic,” “supplemental,” and “exploratory.” Key EEG design elements, defined as concepts that pertained to a methodological parameter relevant to the acquisition, processing, or analysis of data, were also included but were not classified as CDEs.

Results

After identifying existing pertinent CDEs and developing novel CDEs for electrophysiology in DoC, variables were organized into a framework based on the two primary categories of resting state EEG and perturbed EEG. Using this categorical framework, two case report forms were generated by the working group.

Conclusions

Adherence to the recommendations outlined by the electrophysiology working group in the resting state EEG and perturbed EEG case report forms will facilitate data collection and sharing in DoC research on an international level. In turn, this will allow for more informed and reliable comparison of results across studies, facilitating further advancement in the realm of DoC research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loomis AL, Harvey EN, Hobart G. Potential rhythms of the cerebral cortex during sleep. Science. 1935;81(2111):597–8. https://doi.org/10.1126/science.81.2111.597.

    Article  CAS  PubMed  Google Scholar 

  2. Schomer DL, da Silva FHL. Niedermeyer’s electroencephalography: basic principles, clinical applications, and related fields: sixth edition. In: Schomer DL, Lopes da Silva FH (eds) Wolters Kluver/Lippincott Williams & Wilkins. 2011. https://doi.org/10.1111/j.1468-1331.2011.03406.x

  3. Comanducci A, Boly M, Claassen J, et al. Clinical and advanced neurophysiology in the prognostic and diagnostic evaluation of disorders of consciousness: review of an IFCN-endorsed expert group. Clin Neurophysiol. 2020;131(11):2736–65. https://doi.org/10.1016/j.clinph.2020.07.015.

    Article  CAS  PubMed  Google Scholar 

  4. Giacino JT, Schnakers C, Rodriguez-Moreno D, Kalmar K, Schiff N, Hirsch J. Behavioral assessment in patients with disorders of consciousness: gold standard or fool’s gold? Prog Brain Res. 2009;177:33–48. https://doi.org/10.1016/S0079-6123(09)17704-X.

    Article  PubMed  Google Scholar 

  5. Kondziella D, Bender A, Diserens K, et al. European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur J Neurol. 2020;27(5):741–56. https://doi.org/10.1111/ene.14151.

    Article  CAS  PubMed  Google Scholar 

  6. Hockaday JM, Potts F, Epstein E, Bonazzi A, Schwab RS. Electroencephalographic changes in acute cerebral anoxia from cardiac or respiratory arrest. Electroencephalogr Clin Neurophysiol. 1965;18(6):575–86. https://doi.org/10.1016/0013-4694(65)90075-1.

    Article  CAS  PubMed  Google Scholar 

  7. Synek VM. Prognostically important EEG coma patterns in diffuse anoxic and traumatic encephalopathies in adults. J Clin Neurophysiol. 1988;5(2):161–74. https://doi.org/10.1097/00004691-198804000-00003.

    Article  CAS  PubMed  Google Scholar 

  8. Hirsch LJ, Fong MWK, Leitinger M, et al. American clinical neurophysiology society’s standardized critical care EEG terminology: 2021 version. J Clin Neurophysiol. 2021;38(1):1–29. https://doi.org/10.1097/WNP.0000000000000806.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gaspard N, Hirsch LJ, LaRoche SM, Hahn CD, Brandon M. Interrater agreement for critical care EEG terminology. Epilepsia. 2014;55(9):1366–73. https://doi.org/10.1111/epi.12653.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Westhall E, Rosén I, Rossetti AO, et al. Interrater variability of EEG interpretation in comatose cardiac arrest patients. Clin Neurophysiol. 2015;126(12):2397–404. https://doi.org/10.1016/j.clinph.2015.03.017.

    Article  PubMed  Google Scholar 

  11. Claassen J, Mayer SA, Kowalski RG, Emerson RG, Hirsch LJ. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology. 2004;62(10):1743–8. https://doi.org/10.1212/01.WNL.0000125184.88797.62.

    Article  CAS  PubMed  Google Scholar 

  12. Young GB, Jordan KG, Doig GS. An assessment of nonconvulsive seizures in the intensive care unit using continuous EEG monitoring: An investigation of variables associated with mortality. Neurology. 1996;47(1):83–9. https://doi.org/10.1212/WNL.47.1.83.

    Article  CAS  PubMed  Google Scholar 

  13. Rodríguez V, Rodden MF, LaRoche SM. Ictal-interictal continuum: a proposed treatment algorithm. Clin Neurophysiol. 2016;127(4):2056–64. https://doi.org/10.1016/j.clinph.2016.02.003.

    Article  PubMed  Google Scholar 

  14. Claassen J. How i treat patients with EEG patterns on the ictal-interictal continuum in the neuro ICU. Neurocrit Care. 2009;11(3):437–44. https://doi.org/10.1007/s12028-009-9295-8.

    Article  PubMed  Google Scholar 

  15. Westhall E, Rosén I, Rundgren M, et al. Time to epileptiform activity and EEG background recovery are independent predictors after cardiac arrest. Clin Neurophysiol. 2018;129(8):1660–8. https://doi.org/10.1016/j.clinph.2018.05.016.

    Article  CAS  PubMed  Google Scholar 

  16. Forgacs PB, Conte MM, Fridman EA, Voss PhD HU, Victor JD, Schiff ND. Preservation of electroencephalographic organization in patients with impaired consciousness and imaging-based evidence of command-following. Ann Neurol. 2014;76(6):869–79. https://doi.org/10.1002/ana.24283.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Landsness E, Bruno MA, Noirhomme Q, et al. Electrophysiological correlates of behavioural changes in vigilance in vegetative state and minimally conscious state. Brain. 2011;134(8):2222–32. https://doi.org/10.1093/brain/awr152.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cloostermans MC, Van Meulen FB, Eertman CJ, Hom HW, Van Putten MJAM. Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest: a prospective cohort study. Crit Care Med. 2012;40(10):2867–75. https://doi.org/10.1097/CCM.0b013e31825b94f0.

    Article  PubMed  Google Scholar 

  19. Sivaraju A, Gilmore EJ, Wira CR, et al. Prognostication of post-cardiac arrest coma: early clinical and electroencephalographic predictors of outcome. Intensive Care Med. 2015;41(7):1264–72. https://doi.org/10.1007/s00134-015-3834-x.

    Article  PubMed  Google Scholar 

  20. Hofmeijer J, Tjepkema-Cloostermans MC, van Putten MJAM. Burst-suppression with identical bursts: a distinct EEG pattern with poor outcome in postanoxic coma. Clin Neurophysiol. 2014;125(5):947–54. https://doi.org/10.1016/j.clinph.2013.10.017.

    Article  PubMed  Google Scholar 

  21. Rossetti AO, Carrera E, Oddo M. Early EEG correlates of neuronal injury after brain anoxia. Neurology. 2012;78(11):796–802. https://doi.org/10.1212/WNL.0b013e318249f6bb.

    Article  CAS  PubMed  Google Scholar 

  22. Sandroni C, D’Arrigo S, Nolan JP. Prognostication after cardiac arrest. Crit Care. 2018;22(1):150. https://doi.org/10.1186/s13054-018-2060-7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Forgacs PB, Devinsky O, Schiff ND. Independent functional outcomes after prolonged coma following cardiac arrest: a mechanistic hypothesis. Ann Neurol. 2020;87(4):618–32. https://doi.org/10.1002/ana.25690.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lechinger J, Bothe K, Pichler G, et al. CRS-R score in disorders of consciousness is strongly related to spectral EEG at rest. J Neurol. 2013;260(9):2348–56. https://doi.org/10.1007/s00415-013-6982-3.

    Article  PubMed  Google Scholar 

  25. Sitt JD, King JR, El Karoui I, et al. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain. 2014;137(8):2258–70. https://doi.org/10.1093/brain/awu141.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Engemann DA, Raimondo F, King JR, et al. Robust EEG-based cross-site and cross-protocol classification of states of consciousness. Brain. 2018;141(11):3179–92. https://doi.org/10.1093/brain/awy251.

    Article  PubMed  Google Scholar 

  27. Fellinger R, Klimesch W, Schnakers C, et al. Cognitive processes in disorders of consciousness as revealed by EEG time-frequency analyses. Clin Neurophysiol. 2011;122(11):2177–84. https://doi.org/10.1016/j.clinph.2011.03.004.

    Article  CAS  PubMed  Google Scholar 

  28. Gosseries O, Schnakers C, Ledoux D, et al. Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state. Funct Neurol. 2011;26(1):25.

    PubMed  PubMed Central  Google Scholar 

  29. Schartner M, Seth A, Noirhomme Q, et al. Complexity of multi-dimensional spontaneous EEG decreases during propofol induced general anaesthesia. PLoS ONE. 2015;10(8):e0133532. https://doi.org/10.1371/journal.pone.0133532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. King JR, Sitt JD, Faugeras F, et al. Information sharing in the brain indexes consciousness in noncommunicative patients. Curr Biol. 2013;23(19):1914–9. https://doi.org/10.1016/j.cub.2013.07.075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schiff ND, Nauvel T, Victor JD. Large-scale brain dynamics in disorders of consciousness. Curr Opin Neurobiol. 2014;25:7–14. https://doi.org/10.1016/j.conb.2013.10.007.

    Article  CAS  PubMed  Google Scholar 

  32. Schiff ND. Mesocircuit mechanisms underlying recovery of consciousness following severe brain injuries: Model and predictions. In: Brain function and responsiveness in disorders of consciousness. 2016. https://doi.org/10.1007/978-3-319-21425-2_15.

  33. Forgacs PB, Frey HP, Velazquez A, et al. Dynamic regimes of neocortical activity linked to corticothalamic integrity correlate with outcomes in acute anoxic brain injury after cardiac arrest. Ann Clin Transl Neurol. 2017;4(2):119–29. https://doi.org/10.1002/acn3.385.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Frohlich J, Crone JS, Johnson MA, et al. Neural oscillations track recovery of consciousness in acute traumatic brain injury patients. Hum Brain Mapp. 2022;43(6):1804–20. https://doi.org/10.1002/hbm.25725.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Colombo MA, Comanducci A, Casarotto S, et al. Beyond alpha power: EEG spatial and spectral gradients robustly stratify disorders of consciousness. Cereb Cortex. 2023;33(11):7193–210. https://doi.org/10.1093/cercor/bhad031.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sur S, Sinha V. Event-related potential: an overview. Ind Psychiatry J. 2009;18(1):70. https://doi.org/10.4103/0972-6748.57865.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Peterson NN, Schroeder CE, Arezzo JC. Neural generators of early cortical somatosensory evoked potentials in the awake monkey. Electroencephalogr Clin Neurophysiol. 1995;96(3):248–60. https://doi.org/10.1016/0168-5597(95)00006-E.

    Article  CAS  PubMed  Google Scholar 

  38. Näätänen R, Gaillard AWK, Mäntysalo S. Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst). 1978;42(4):313–29. https://doi.org/10.1016/0001-6918(78)90006-9.

    Article  PubMed  Google Scholar 

  39. Garrido MI, Kilner JM, Stephan KE, Friston KJ. The mismatch negativity: A review of underlying mechanisms. Clin Neurophysiol. 2009;120(3):453–63. https://doi.org/10.1016/j.clinph.2008.11.029.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Morlet D, Fischer C. MMN and novelty P3 in coma and other altered states of consciousness: a review. Brain Topogr. 2014;27(4):467–79. https://doi.org/10.1007/s10548-013-0335-5.

    Article  PubMed  Google Scholar 

  41. Kane NM, Curry SH, Butler SR, Cummins BH. Electrophysiological indicator of awakening from coma. The Lancet. 1993;341(8846):688. https://doi.org/10.1016/0140-6736(93)90453-N.

    Article  CAS  Google Scholar 

  42. Fischer C, Luauté J, Adeleine P, Morlet D. Predictive value of sensory and cognitive evoked potentials for awakening from coma. Neurology. 2004;63(4):669–73. https://doi.org/10.1212/01.WNL.0000134670.10384.E2.

    Article  PubMed  Google Scholar 

  43. Luauté J, Fischer C, Adeleine P, Morlet D, Tell L, Boisson D. Late auditory and event-related potentials can be useful to predict good functional outcome after coma. Arch Phys Med Rehabil. 2005;86(5):917–23. https://doi.org/10.1016/j.apmr.2004.08.011.

    Article  PubMed  Google Scholar 

  44. Naccache L, Puybasset L, Gaillard R, Serve E, Willer JC. Auditory mismatch negativity is a good predictor of awakening in comatose patients: a fast and reliable procedure [1]. Clin Neurophysiol. 2005;116(4):988–9. https://doi.org/10.1016/j.clinph.2004.10.009.

    Article  PubMed  Google Scholar 

  45. Wijnen VJM, van Boxtel GJM, Eilander HJ, de Gelder B. Mismatch negativity predicts recovery from the vegetative state. Clin Neurophysiol. 2007;118(3):597–605. https://doi.org/10.1016/j.clinph.2006.11.020.

    Article  CAS  PubMed  Google Scholar 

  46. Sutton S, Braren M, Zubin J, John ER. Evoked-potential correlates of stimulus uncertainty. Science (1979). 1965;150(3700):1187–8. https://doi.org/10.1126/science.150.3700.1187.

    Article  CAS  Google Scholar 

  47. Squires NK, Squires KC, Hillyard SA. Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr Clin Neurophysiol. 1975;38(4):387–401. https://doi.org/10.1016/0013-4694(75)90263-1.

    Article  CAS  PubMed  Google Scholar 

  48. Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118(10):2128–48. https://doi.org/10.1016/j.clinph.2007.04.019.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Picton TW. The P300 wave of the human event-related potential. J Clin Neurophysiol. 1992;9(4):456. https://doi.org/10.1097/00004691-199210000-00002.

    Article  CAS  PubMed  Google Scholar 

  50. Dehaene S, Changeux JP. Experimental and Theoretical approaches to conscious processing. Neuron. 2011;70(2):200–27. https://doi.org/10.1016/j.neuron.2011.03.018.

    Article  CAS  PubMed  Google Scholar 

  51. Bekinschtein TA, Dehaene S, Rohaut B, Tadel F, Cohen L, Naccache L. Neural signature of the conscious processing of auditory regularities. Proc Natl Acad Sci. 2009;106:1672–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Perez P, Valente M, Hermann B, et al. Auditory event-related “global effect” predicts recovery of overt consciousness. Front Neurol. 2021;11:588233. https://doi.org/10.3389/fneur.2020.588233.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Goldie WD, Chiappa KH, Young RR, Brooks EB. Brainstem auditory and short-latency somatosensory evoked responses in brain death. Neurology. 1981;31(3):248. https://doi.org/10.1212/wnl.31.3.248.

    Article  CAS  PubMed  Google Scholar 

  54. Zandbergen EGJ, Koelman JHTM, De Haan RJ, Hijdra A. SSEPs and prognosis in postanoxic coma: only short or also long latency responses? Neurology. 2006;67(4):583–6. https://doi.org/10.1212/01.wnl.0000230162.35249.7f.

    Article  CAS  PubMed  Google Scholar 

  55. Rothstein TL, Thomas EM, Sumi SM. Predicting outcome in hypoxic-ischemic coma. A prospective clinical and electrophysiologic study. Electroencephalogr Clin Neurophysiol. 1991;79(2):101–7. https://doi.org/10.1016/0013-4694(91)90046-7.

    Article  CAS  PubMed  Google Scholar 

  56. Madl C, Kramer L, Domanovits H, et al. Improved outcome prediction in unconscious cardiac arrest survivors with sensory evoked potentials compared with clinical assessment. Crit Care Med. 2000;28(3):721–6. https://doi.org/10.1097/00003246-200003000-00020.

    Article  CAS  PubMed  Google Scholar 

  57. Sherman AL, Tirschwell DL, Micklesen PJ, Longstreth WT, Robinson LR. Somatosensory potentials, CSF creatine kinase BB activity, and awakening after cardiac arrest. Neurology. 2000;54(4):889–94. https://doi.org/10.1212/WNL.54.4.889.

    Article  CAS  PubMed  Google Scholar 

  58. Logi F, Fischer C, Murri L, Mauguière F. The prognostic value of evoked responses from primary somatosensory and auditory cortex in comatose patients. Clin Neurophysiol. 2003;114(9):1615–27. https://doi.org/10.1016/S1388-2457(03)00086-5.

    Article  CAS  PubMed  Google Scholar 

  59. Zandbergen EGJ, de Haan RJ, Stoutenbeek CP, Koelman JHTM, Hijdra A. Systematic review of early prediction of poor outcome in anoxic- ischaemic coma. Lancet. 1998;352(9143):1808–12. https://doi.org/10.1016/S0140-6736(98)04076-8.

    Article  CAS  PubMed  Google Scholar 

  60. Amorim E, Ghassemi MM, Lee JW, et al. Estimating the false positive rate of absent somatosensory evoked potentials in cardiac arrest prognostication. Crit Care Med. 2018;46(12):e1213–21. https://doi.org/10.1097/CCM.0000000000003436.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD. Detecting awareness in the vegetative state. Science (1979). 2006;313(5792):1402. https://doi.org/10.1126/science.1130197.

    Article  CAS  Google Scholar 

  62. Bardin JC, Fins JJ, Katz DI, et al. Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury. Brain. 2011;134(3):769–82. https://doi.org/10.1093/brain/awr005.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fernández-Espejo D, Bekinschtein T, Monti MM, et al. Diffusion weighted imaging distinguishes the vegetative state from the minimally conscious state. Neuroimage. 2011;54(1):103–12. https://doi.org/10.1016/j.neuroimage.2010.08.035.

    Article  PubMed  Google Scholar 

  64. Stender J, Gosseries O, Bruno MA, et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: A clinical validation study. The Lancet. 2014;384(9942):514–22. https://doi.org/10.1016/S0140-6736(14)60042-8.

    Article  Google Scholar 

  65. Claassen J, Doyle K, Matory A, et al. Detection of brain activation in unresponsive patients with acute brain injury. N Engl J Med. 2019;380(26):2497–505. https://doi.org/10.1056/nejmoa1812757.

    Article  PubMed  Google Scholar 

  66. Egbebike J, Shen Q, Doyle K, et al. Cognitive-motor dissociation and time to functional recovery in patients with acute brain injury in the USA: a prospective observational cohort study. Lancet Neurol. 2022;21(8):704–13. https://doi.org/10.1016/S1474-4422(22)00212-5.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Koch C, Massimini M, Boly M, Tononi G. Neural correlates of consciousness: progress and problems. Nat Rev Neurosci. 2016;17(5):307–21. https://doi.org/10.1038/nrn.2016.22.

    Article  CAS  PubMed  Google Scholar 

  68. Massimini M, Boly M, Casali A, Rosanova M, Tononi G. A perturbational approach for evaluating the brain’s capacity for consciousness. Prog Brain Res. 2009;177(C):25. https://doi.org/10.1016/S0079-6123(09)17714-2.

    Article  Google Scholar 

  69. Ilmoniemi RJ, Virtanen J, Ruohonen J, et al. Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. NeuroReport. 1997;8(16):3537–40. https://doi.org/10.1097/00001756-199711100-00024.

    Article  CAS  PubMed  Google Scholar 

  70. Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M. Natural frequencies of human corticothalamic circuits. J Neurosci. 2009;29(24):7679–85. https://doi.org/10.1523/JNEUROSCI.0445-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G. Breakdown of cortical effective connectivity during sleep. Science. 2005;309(5744):2228–32.

    Article  CAS  PubMed  Google Scholar 

  72. Massimini M, Ferrarelli F, Esser SK, et al. Triggering sleep slow waves by transcranial magnetic stimulation. Proc Natl Acad Sci USA. 2007;104(20):8496–501. https://doi.org/10.1073/pnas.0702495104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sarasso S, Boly M, Napolitani M, et al. Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine. Curr Biol. 2015;25(23):3099–105. https://doi.org/10.1016/j.cub.2015.10.014.

    Article  CAS  PubMed  Google Scholar 

  74. Rosanova M, Gosseries O, Casarotto S, et al. Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients. Brain. 2012;135(4):1308–20. https://doi.org/10.1093/brain/awr340.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ragazzoni A, Pirulli C, Veniero D, et al. Vegetative versus minimally conscious states: a study using TMS-EEG, sensory and event-related potentials. PLoS ONE. 2013;8(2):e57069. https://doi.org/10.1371/journal.pone.0057069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bodart O, Gosseries O, Wannez S, et al. Measures of metabolism and complexity in the brain of patients with disorders of consciousness. Neuroimage Clin. 2017;14:354–62. https://doi.org/10.1016/j.nicl.2017.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Casarotto S, Comanducci A, Rosanova M, et al. Stratification of unresponsive patients by an independently validated index of brain complexity. Ann Neurol. 2016;80(5):718–29. https://doi.org/10.1002/ana.24779.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sinitsyn DO, Poydasheva AG, Bakulin IS, et al. Detecting the potential for consciousness in unresponsive patients using the perturbational complexity index. Brain Sci. 2020;10(12):917. https://doi.org/10.3390/brainsci10120917.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Casarotto S, Fecchio M, Rosanova M, et al. The rt-TEP tool: real-time visualization of TMS-evoked potentials to maximize cortical activation and minimize artifacts. J Neurosci Methods. 2022;370:109486. https://doi.org/10.1016/j.jneumeth.2022.109486.

    Article  PubMed  Google Scholar 

  80. Russo S, Sarasso S, Puglisi GE, et al. TAAC-TMS adaptable auditory control: a universal tool to mask TMS clicks. J Neurosci Methods. 2022;370:109491. https://doi.org/10.1016/j.jneumeth.2022.109491.

    Article  CAS  PubMed  Google Scholar 

  81. Lioumis P, Rosanova M. The role of neuronavigation in TMS-EEG studies: current applications and future perspectives. J Neurosci Methods. 2022;380:109677. https://doi.org/10.1016/j.jneumeth.2022.109677.

    Article  PubMed  Google Scholar 

  82. Comanducci A, Casarotto S, Rosanova M, et al. Unconsciousness or unresponsiveness in akinetic mutism? Insights from a multimodal longitudinal exploration. Eur J Neurosci. 2023. https://doi.org/10.1111/ejn.15994.

    Article  PubMed  Google Scholar 

  83. Edlow BL, Fecchio M, Bodien YG, et al. Measuring consciousness in the intensive care unit. Neurocrit Care. 2023;38(3):584–90. https://doi.org/10.1007/s12028-023-01706-4.

    Article  PubMed  Google Scholar 

  84. Suarez JI, Sheikh MK, Macdonald RL, et al. Common data elements for unruptured intracranial aneurysms and subarachnoid hemorrhage clinical research: a National Institute for Neurological Disorders and Stroke and National Library of Medicine Project. Neurocrit Care. 2019;30:4–19. https://doi.org/10.1007/s12028-019-00723-6.

    Article  PubMed  Google Scholar 

  85. S. T, C. F, S. K, et al. National institute of neurological disorders and stroke (NINDS), national institutes of health (NIH), Common Data Element (CDE) project: Epilepsy CDE update. Epilepsia. 2009;50.

  86. Loring DW, Lowenstein DH, Barbaro NM, et al. Common data elements in epilepsy research: Development and implementation of the NINDS epilepsy CDE project. Epilepsia. 2011;52(6):1186–91. https://doi.org/10.1111/j.1528-1167.2011.03018.x.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Curing Coma Campaign Collaborators are listed in the Supplementary Appendix.

Funding

Included National Institute of Neurological Disorders and Stroke (NINDS) (R01NS106014, R03NS112760, R21NS128326) and James S. McDonnell Foundation (J.C.); Institutional KL2 Career Development Award from the Miami Clinical and Translational Science Institute (CTSI), National Center for Advancing Translational Sciences (NCATS), UL1TR002736 and by the NINDS (K23NS126577, R21NS128326) (AA); United States Department of Defense (W81XWH19-1–0514), American Heart Association (19CDA34760291) and Innovators for Neuroscience in Kids Foundation (BA); NINDS (R01NS117904, UG3NS123307), Yale New Haven Health System (YNHHS), Innovations (EG); European Research Area (ERA), PerMed JTC2019 (project PerBrain) and JTC2021 (project ModelDXConsciousness) (JDS); Calgary Health Foundation Grant for Neurocritical Care Expansion Project, Office of Health & Medical Education Scholarship Grant, Canadian Institute of Health Research Grant (BR); European Union’s Horizon2020 Framework Program for Research and Innovation under the Specific Grant Agreement No.945539 (Human Brain Project SGA3) and by the Fondazione Regionale per la Ricerca Biomedica (Regione Lombardia), Project PerBrain, call ERAPERMED2019-101,GA779282 (MR).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

EC and JC wrote the initial draft of the manuscript. CD, AA, BA, EG, JK, BR, MR, and JDS, edited the manuscript and approved the final content. All co-authors contributed equally to the case report forms released with the article.

Corresponding author

Correspondence to Jan Claassen.

Ethics declarations

Conflict of interest

Minority shareholder in iCE Neurosystems (J.C.), Minority shareholder of Intrinsic Powers Inc., a spin-off of the University of Milan, Milan, Italy (MR). The remaining authors have no conflicts of interest.

Ethical Approval/Informed Consent

New data were not acquired or analyzed for this article, and therefore there was no need for informed consent or approval from an institutional review board.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carroll, E.E., Der-Nigoghossian, C., Alkhachroum, A. et al. Common Data Elements for Disorders of Consciousness: Recommendations from the Electrophysiology Working Group. Neurocrit Care 39, 578–585 (2023). https://doi.org/10.1007/s12028-023-01795-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-023-01795-1

Keywords

Navigation