Skip to main content

Advertisement

Log in

Retrospective External Validation of the Status Epilepticus Severity Score (STESS) to Predict In-hospital Mortality in Adults with Nonhypoxic Status Epilepticus: A Machine Learning Analysis

  • Original work
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

The objective of this study was to validate the value of the Status Epilepticus Severity Score (STESS) in the prediction of the risk of in-hospital mortality in patients with nonhypoxic status epilepticus (SE) using a machine learning analysis.

Methods

We included consecutive patients with nonhypoxic SE (aged ≥ 16 years) admitted from 2013 to 2021 at the Modena Academic Hospital. A decision tree analysis was performed using in-hospital mortality as a dependent variable and the STESS predictors as input variables. We evaluated the accuracy of STESS in predicting in-hospital mortality using the area under the receiver operating characteristic curve (AUROC) with 95% confidence interval (CI).

Results

Among 629 patients with SE, the in-hospital mortality rate was 23.4% (147 of 629). The median STESS in the entire cohort was 2.9 (SD 1.6); it was lower in surviving compared with deceased patients (2.7, SD 1.5 versus 3.9, SD 1.6; p < 0.001). Of deceased patients, 82.3% (121 of 147) had scores of 3–6, whereas 17.7% (26 of 147) had scores of 0–2 (p < 0.001). STESS was accurate in predicting mortality, with an AUROC of 0.688 (95% CI 0.641–0.734) only slightly reduced after bootstrap resampling. The most significant predictor was the seizure type, followed by age and level of consciousness at SE onset. Nonconvulsive SE in coma and age ≥ 65 years predicted a higher risk of mortality, whereas generalized convulsive SE and age < 65 years were associated with a lower risk of death. The decision tree analysis using STESS variables correctly classified 90% of survivors and 34% of nonsurvivors after the SE, with an overall risk of error of 23.1%.

Conclusions

This validation study using a machine learning system showed that STESS is a valuable prognostic tool. The score appears particularly accurate and effective in identifying patients who are alive at discharge (high negative predictive value), whereas it has a lower predictive value for in-hospital mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

On request from qualified investigators, we will share anonymized data.

References

  1. Trinka E, Cock H, Hesdorffer D, et al. A definition and classification of status epilepticus–report of the ILAE task force on classification of status epilepticus. Epilepsia. 2015;56(10):1515–23. https://doi.org/10.1111/epi.13121.

    Article  PubMed  Google Scholar 

  2. Leitinger M, Trinka E, Zimmermann G, Granbichler CA, Kobulashvili T, Siebert U. Epidemiology of status epilepticus in adults: apples, pears, and oranges - a critical review. Epilepsy Behav. 2020;103(Pt A): 106720. https://doi.org/10.1016/j.yebeh.2019.106720.

    Article  PubMed  Google Scholar 

  3. Neligan A, Shorvon SD. Frequency and prognosis of convulsive status epilepticus of different causes: a systematic review. Arch Neurol. 2010;67(8):931–40. https://doi.org/10.1001/archneurol.2010.169.

    Article  PubMed  Google Scholar 

  4. Giovannini G, Monti G, Tondelli M, et al. Mortality, morbidity and refractoriness prediction in status epilepticus: comparison of STESS and EMSE scores. Seizure. 2017;46:31–7. https://doi.org/10.1016/j.seizure.2017.01.004.

    Article  PubMed  Google Scholar 

  5. Yuan F, Gao Q, Jiang W. Prognostic scores in status epilepticus-a critical appraisal. Epilepsia. 2018;59(Suppl 2):170–5. https://doi.org/10.1111/epi.14483.

    Article  PubMed  Google Scholar 

  6. Rossetti AO, Logroscino G, Bromfield EB. A clinical score for prognosis of status epilepticus in adults. Neurology. 2006;66(11):1736–8. https://doi.org/10.1212/01.wnl.0000223352.71621.97.

    Article  PubMed  Google Scholar 

  7. Rossetti AO, Logroscino G, Milligan TA, Michaelides C, Ruffieux C, Bromfield EB. Status epilepticus severity score (STESS): a tool to orient early treatment strategy. J Neurol. 2008;255(10):1561–6. https://doi.org/10.1007/s00415-008-0989-1.

    Article  PubMed  Google Scholar 

  8. Goyal MK, Chakravarthi S, Modi M, Bhalla A, Lal V. Status epilepticus severity score (STESS): a useful tool to predict outcome of status epilepticus. Clin Neurol Neurosurg. 2015;139:96–9. https://doi.org/10.1016/j.clineuro.2015.09.010.

    Article  PubMed  Google Scholar 

  9. Pacha MS, Orellana L, Silva E, et al. Role of EMSE and STESS scores in the outcome evaluation of status epilepticus. Epilepsy Behav. 2016;64(Pt A):140–2. https://doi.org/10.1016/j.yebeh.2016.09.036.

    Article  PubMed  Google Scholar 

  10. Aukland P, Lando M, Vilholm O, Christiansen EB, Beier CP. Predictive value of the status epilepticus severity score (STESS) and its components for long-term survival. BMC Neurol. 2016;16(1):213. https://doi.org/10.1186/s12883-016-0730-0.

    Article  PubMed  PubMed Central  Google Scholar 

  11. González-Cuevas M, Santamarina E, Toledo M, et al. A new clinical score for the prognosis of status epilepticus in adults. Eur J Neurol. 2016;23(10):1534–40. https://doi.org/10.1111/ene.13073.

    Article  PubMed  Google Scholar 

  12. Sutter R, Kaplan PW, Rüegg S. Independent external validation of the status epilepticus severity score. Crit Care Med. 2013;41(12):e475–9. https://doi.org/10.1097/CCM.0b013e31829eca06.

    Article  PubMed  Google Scholar 

  13. Leitinger M, Höller Y, Kalss G, et al. Epidemiology-based mortality score in status epilepticus (EMSE). Neurocrit Care. 2015;22(2):273–82. https://doi.org/10.1007/s12028-014-0080-y.

    Article  CAS  PubMed  Google Scholar 

  14. Kang BS, Kim DW, Kim KK, et al. Prediction of mortality and functional outcome from status epilepticus and independent external validation of STESS and EMSE scores. Crit Care. 2016;20:25. https://doi.org/10.1186/s13054-016-1190-z.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang P, Guan Y, Lin X, et al. Diagnostic value of status epilepticus severity score for survival conditions of patients with status epilepticus: a PRISMA-compliant systematic review and meta-analysis. Epilepsy Behav. 2018;82:104–10. https://doi.org/10.1016/j.yebeh.2018.02.033.

    Article  PubMed  Google Scholar 

  16. Leitinger M, Kalss G, Rohracher A, et al. Predicting outcome of status epilepticus. Epilepsy Behav. 2015;49:126–30. https://doi.org/10.1016/j.yebeh.2015.04.066.

    Article  CAS  PubMed  Google Scholar 

  17. Song YY, Lu Y. Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatry. 2015;27:130–5.

    PubMed  PubMed Central  Google Scholar 

  18. Shirali GA, Noroozi MV, Malehi AS. Predicting the outcome of occupational accidents by CART and CHAID methods at a steel factory in Iran. J Public Health Res. 2018;7:1361.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brigo F, Turcato G, Lattanzi S, et al. Machine-learning validation through decision-tree analysis of the epidemiology-based mortality score in status epilepticus. Epilepsia. 2022. https://doi.org/10.1111/epi.17372.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Leitinger M, Beniczky S, Rohracher A, et al. Salzburg consensus criteria for non-convulsive status epilepticus–approach to clinical application. Epilepsy Behav. 2015;49:158–63. https://doi.org/10.1016/j.yebeh.2015.05.007.

    Article  CAS  PubMed  Google Scholar 

  21. Leitinger M, Trinka E, Gardella E, et al. Diagnostic accuracy of the Salzburg EEG criteria for non-convulsive status epilepticus: a retrospective study. Lancet Neurol. 2016;15(10):1054–62. https://doi.org/10.1016/S1474-4422(16)30137-5.

    Article  PubMed  Google Scholar 

  22. Brophy GM, Bell R, Claassen J, et al. Guidelines for the evaluation and management of status epilepticus. Neurocrit Care. 2012;17(1):3–23. https://doi.org/10.1007/s12028-012-9695-z.

    Article  PubMed  Google Scholar 

  23. Glauser T, Shinnar S, Gloss D, et al. Evidence-based guideline: treatment of convulsive status epilepticus in children and adults: report of the guideline committee of the American epilepsy society. Epilepsy Curr. 2016;16(1):48–61. https://doi.org/10.5698/1535-7597-16.1.48.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Minicucci F, Ferlisi M, Brigo F, et al. Management of status epilepticus in adults position paper of the Italian League against epilepsy. Epilepsy Behav. 2020;102:106675. https://doi.org/10.1016/j.yebeh.2019.106675.

    Article  PubMed  Google Scholar 

  25. Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med. 2013;4(2):627–35.

    PubMed  PubMed Central  Google Scholar 

  26. Park SH, Goo JM, Jo CH. Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean J Radiol. 2004;5(1):11–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Turcato G, Zaboli A, Pfeifer N, et al. Decision tree analysis to predict the risk of intracranial haemorrhage after mild traumatic brain injury in patients taking DOACs. Am J Emerg Med. 2021;50:388–93.

    Article  PubMed  Google Scholar 

  28. Song YY, Lu Y. Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatry. 2015;27(2):130–5. https://doi.org/10.11919/j.issn.1002-0829.215044.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shirali GA, Noroozi MV, Malehi AS. Predicting the outcome of occupational accidents by CART and CHAID methods at a steel factory in Iran. J Public Health Res. 2018;7(2):1361. https://doi.org/10.4081/jphr.2018.1361.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Towne AR, Pellock JM, Ko D, DeLorenzo RJ. Determinants of mortality in status epilepticus. Epilepsia. 1994;35(1):27–34. https://doi.org/10.1111/j.1528-1157.1994.tb02908.x.

    Article  CAS  PubMed  Google Scholar 

  31. Logroscino G, Hesdorffer DC, Cascino G, Annegers JF, Hauser WA. Short-term mortality after a first episode of status epilepticus. Epilepsia. 1997;38(12):1344–9. https://doi.org/10.1111/j.1528-1157.1997.tb00073.x.

    Article  CAS  PubMed  Google Scholar 

  32. Koubeissi M, Alshekhlee A. In-hospital mortality of generalized convulsive status epilepticus: a large US sample. Neurology. 2007;69(9):886–93. https://doi.org/10.1212/01.wnl.0000269791.96189.70.

    Article  PubMed  Google Scholar 

  33. Leitinger M, Trinka E, Giovannini G, et al. Epidemiology of status epilepticus in adults: a population-based study on incidence, causes, and outcomes. Epilepsia. 2019;60(1):53–62. https://doi.org/10.1111/epi.14607.

    Article  PubMed  Google Scholar 

  34. Logroscino G, Hesdorffer DC, Cascino G, Annegers JF, Hauser WA. Time trends in incidence, mortality, and case-fatality after first episode of status epilepticus. Epilepsia. 2001;42(8):1031–5. https://doi.org/10.1046/j.1528-1157.2001.0420081031.x.

    Article  CAS  PubMed  Google Scholar 

  35. Lattanzi S, Giovannini G, Brigo F, Orlandi N, Trinka E, Meletti S. Status epilepticus with prominent motor symptoms clusters into distinct electroclinical phenotypes. Eur J Neurol. 2021;28(8):2694–9. https://doi.org/10.1111/ene.14891.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sutter R, Kaplan PW. The neurophysiologic types of nonconvulsive status epilepticus: EEG patterns of different phenotypes. Epilepsia. 2013;54(Suppl 6):23–7.

    Article  PubMed  Google Scholar 

  37. Sutter R, Semmlack S, Kaplan PW. Nonconvulsive status epilepticus in adults - insights into the invisible. Nat Rev Neurol. 2016;12(5):281–93.

    Article  CAS  PubMed  Google Scholar 

  38. Sutter R. Are we prepared to detect subtle and nonconvulsive status epilepticus in critically Ill patients? J Clin Neurophysiol. 2016;33(1):25–31.

    Article  PubMed  Google Scholar 

  39. Kinney MO, Craig JJ, Kaplan PW. Hidden in plain sight: Non-convulsive status epilepticus—recognition and management. Acta Neurol Scand. 2017;136:280–92.

    Article  CAS  PubMed  Google Scholar 

  40. Teasdale G, Jennett B. Assessment of coma and impaired consciousness A practical scale. Lancet. 1974;2(7872):81–4. https://doi.org/10.1016/s0140-6736(74)91639-0.

    Article  CAS  PubMed  Google Scholar 

  41. Lattanzi S, Giovannini G, Brigo F, Orlandi N, Trinka E, Meletti S. Clinical phenotypes within nonconvulsive status epilepticus. Epilepsia. 2021;62(9):e129–34. https://doi.org/10.1111/epi.16999.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Semmlack S, Kaplan PW, Spiegel R, et al. Illness severity scoring in status epilepticus-when STESS meets APACHE II, SAPS II, and SOFA. Epilepsia. 2019;60(2):189–200.

    Article  PubMed  Google Scholar 

  43. Sutter R, Semmlack S, Opić P, et al. Untangling operational failures of the Status Epilepticus Severity Score (STESS). Neurology. 2019;92(17):e1948–56.

    Article  PubMed  Google Scholar 

  44. Yechoor N, Adeli A, Hafeez S. External validation of the epidemiology-based mortality score in status epilepticus in an American intensive care population. Epilepsy Res. 2018;148:32–6. https://doi.org/10.1016/j.eplepsyres.2018.10.001.

    Article  PubMed  Google Scholar 

  45. Huang TH, Lai MC, Chen YS, Huang CW. Status epilepticus mortality risk factors and a correlation survey with the newly modified STESS. Healthcare (Basel). 2021;9(11):1570.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research received funding from the Italian MOH (“Status epilepticus: improving therapeutic and quality of care intervention in the Emilia-Romagna region”; project code: RF-2016–02,361,365) and by the MIUR (grant “Dipartimenti di eccellenza 2018–2022” to the Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio-Emilia).

Author information

Authors and Affiliations

Authors

Contributions

FB: conceptualization, methodology, original draft preparation. GT: conceptualization, formal analysis, methodology, original draft preparation. SL: methodology, review and editing. NO: data curation, investigation, review and editing. GT: data curation, investigation, review and editing. AZ: methodology, visualization, review and editing. GG: data curation, investigation, review and editing. SM: review and editing, supervision, validation.

Corresponding author

Correspondence to Stefano Meletti.

Ethics declarations

Conflicts of interest

None of the authors has any conflicts of interest to disclose.

Ethical Approval/Informed Consent

The study was approved by the local ethical committee (ethics committee approval number 556/2018/OSS/AOUMO–RF‐2016‐02,361,365) and was conducted according to the ethical principles for medical research involving human subjects in the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brigo, F., Turcato, G., Lattanzi, S. et al. Retrospective External Validation of the Status Epilepticus Severity Score (STESS) to Predict In-hospital Mortality in Adults with Nonhypoxic Status Epilepticus: A Machine Learning Analysis. Neurocrit Care 38, 254–262 (2023). https://doi.org/10.1007/s12028-022-01610-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-022-01610-3

Keywords

Navigation