Skip to main content

Advertisement

Log in

Nutritional and Bioenergetic Considerations in Critically Ill Patients with Acute Neurological Injury

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

The brain, due to intensive cellular processes and maintenance of electrochemical gradients, is heavily dependent on a constant supply of energy. Brain injury, and critical illness in general, induces a state of increased metabolism and catabolism, which has been proven to lead to poor outcomes. Of all the biochemical interventions undertaken in the ICU, providing nutritional support is perhaps one of the most undervalued, but potentially among the safest, and most effective interventions. Adequate provisions of calories and protein have been shown to improve patient outcomes, and guidelines for the nutritional support of the critically ill patient are reviewed. However, there are no such specific guidelines for the critically ill patient with neurological injury. Patients with primary or secondary neurological disorders are frequently undernourished, while data suggest this population would benefit from early and adequate nutritional support, although comprehensive clinical evidence is lacking. We review the joint recommendations from the Society for Critical Care Medicine and the American Society for Parenteral and Enteral Nutrition, as they pertain to neurocritical care, and assess the recommendations for addressing nutrition in this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Astrup J, Siesjö B, Symon L. Thresholds in cerebral ischaemia—the ischaemic penumbra. Stroke. 1981;12:723–5.

    Article  CAS  PubMed  Google Scholar 

  2. Hossmann KA. Viability thresholds and the penumbra of focal ischaemia. Ann Neurol. 1994;36:557–65.

    Article  CAS  PubMed  Google Scholar 

  3. Vannucci SJ, Maher F, Simpson IA. Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia. 1997;21:2–21.

    Article  CAS  PubMed  Google Scholar 

  4. Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab. 2007;27:1766–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deng D, Yan N. GLUT, SGLT, and SWEET: structural and mechanistic investigations of the glucose transporters. Protein Sci. 2015. doi:10.1002/pro.2858.

    Google Scholar 

  6. Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ. The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab. 2008;295:242–53.

    Article  CAS  Google Scholar 

  7. Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem. 2005;94:1–14.

    Article  CAS  PubMed  Google Scholar 

  8. Bergersen LH. Lactate transport and signaling in the brain: potential therapeutic targets and roles in body-brain interaction. J Cereb Blood Flow Metab. 2015;35:176–85.

    Article  CAS  PubMed  Google Scholar 

  9. Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA. 1994;91:10625–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mächler P, Wyss MT, Elsayed M, Stobart J, Gutierrez R, Von Faber-Castell A, et al. In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab. 2016;23:94–102.

    Article  PubMed  CAS  Google Scholar 

  11. Oddo M, Levine JM, Frangos S, Maloney-Wilensky E, Carrera E, Daniel RT, et al. Brain lactate metabolism in humans with subarachnoid hemorrhage. Stroke. 2012;43:1418–21.

    Article  CAS  PubMed  Google Scholar 

  12. Glenn TC, Martin NA, Horning MA, McArthur DL, Hovda DA, Vespa P, et al. Lactate: brain fuel in human traumatic brain injury: a comparison with normal healthy control subjects. J Neurotrauma. 2015;32:820–32.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Patet C, Quintard H, Suys T, Bloch J, Daniel RT, Pellerin L, et al. Neuroenergetic response to prolonged cerebral glucose depletion after severe brain injury and the role of lactate. J Neurotrauma. 2015;32:1560–6.

    Article  PubMed  Google Scholar 

  14. Taylor BE, McClave SA, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient. Crit Care Med. 2016.

  15. McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). J Parenter Enter Nutr. 2016;40:159–211.

    Article  CAS  Google Scholar 

  16. Davis CJ, Sowa D, Keim KS, Kinnare K, Peterson S. The Use of prealbumin and C-reactive protein for monitoring nutrition support in adult patients receiving enteral nutrition in an Urban Medical Center. J Parenter Enter Nutr. 2012;36:197–204.

    Article  CAS  Google Scholar 

  17. Schlein KM, Coulter SP. Best practices for determining resting energy expenditure in critically ill adults. Nutr Clin Pract. 2014;29:44–55.

    Article  PubMed  Google Scholar 

  18. Picolo MF, Lago AF, Menegueti MG, Nicolini EA, Basile-Filho A, Nunes AA, et al. Harris-benedict equation and resting energy expenditure estimates in critically ILL ventilator patients. Am J Crit Care. 2016;25:e21–9.

    Article  PubMed  Google Scholar 

  19. Kross EK, Sena M, Schmidt K, Stapleton RD. A comparison of predictive equations of energy expenditure and measured energy expenditure in critically ill patients. J Crit Care. 2012;27:321.e5–12.

    Article  Google Scholar 

  20. Koukiasa P, Bitzani M, Papaioannou V, Pnevmatikos I. Resting energy expenditure in critically ill patients with spontaneous intracranial hemorrhage. J Parenter Enter Nutr. 2015;39:917–21.

    Article  Google Scholar 

  21. Clifton G, Ziegler M, Grossman R. Circulating catecholamines and sympathetic activity after head injury. Neurosurgery. 1981;8:10–4.

    Article  CAS  PubMed  Google Scholar 

  22. Foley N, Marshall S, Pikul J, Salter K, Teasell R. Hypermetabolism following moderate to severe traumatic acute brain injury: a systematic review. J Neurotrauma. 2008;25:1415–31.

    Article  PubMed  Google Scholar 

  23. Oshima T, Deutz NE, Doig G, Wischmeyer PE, Pichard C. Protein-energy nutrition in the ICU is the power couple: a hypothesis forming analysis. Clin Nutr 2016;35(4):968–74.

    Article  PubMed  Google Scholar 

  24. Weijs PJM, Stapel SN, de Groot SDW, Driessen RH, de Jong E, Girbes ARJ, et al. Optimal protein and energy nutrition decreases mortality in mechanically ventilated, critically Ill patients: a prospective observational cohort study. J Parenter Enter Nutr. 2012;36:60–8.

    Article  CAS  Google Scholar 

  25. Arabi YM, Aldawood AS, Haddad SH, Al-Dorzi HM, Tamim HM, Jones G, et al. Permissive underfeeding or standard enteral feeding in critically ill adults. N Engl J Med. 2015;372:2398–408.

    Article  CAS  PubMed  Google Scholar 

  26. Heyland DK. Should We PERMIT systematic underfeeding in all intensive care unit patients? Integrating the results of the PERMIT study in our clinical practice guidelines. J Parenter Enter Nutr. 2015;7–9.

  27. Khalid I, Doshi P, DiGiovine B. Early enteral nutrition and outcomes of critically ill patients treated with vasopressors and mechanical ventilation. Am J Crit Care. 2010;19:261–8.

    Article  PubMed  Google Scholar 

  28. McClave SA, DeMeo MT, DeLegge MH, DiSario JA, Heyland DK, Maloney JP, et al. North American summit on aspiration in the critically ill patient: consensus statement. JPEN J Parenter Enteral Nutr. 2002;26:80–5.

    Article  Google Scholar 

  29. Heyland D, Murch L, Cahill N, McCall M, Muscedere J, Stelfox HT, et al. Enhanced protein-energy provision via the enteral route feeding protocol in critically ill patients: results of a cluster randomized trial. Crit Care Med. 2013;41:2743–53.

    Article  CAS  PubMed  Google Scholar 

  30. McClave SA, Saad MA, Esterle M, Anderson M, Jotautas AE, Franklin GA, et al. Volume-based feeding in the critically ill patient. J Parenter Enter Nutr. 2015;39:707–12.

    Article  Google Scholar 

  31. Haskins IN, Baginsky M, Gamsky N, Sedghi K, Yi S, Amdur RL, et al. A volume-based enteral nutrition support regimen improves caloric delivery but may not affect clinical outcomes in critically ill patients. J Parenter Enteral Nutr. 2015. pii: 0148607115617441.

  32. Peter JV, Moran JL, Phillips-Hughes J. A metaanalysis of treatment outcomes of early enteral versus early parenteral nutrition in hospitalized patients. Crit Care Med. 2005;33:213–20.

    Article  PubMed  Google Scholar 

  33. Harvey SE, Parrott F, Harrison DA, Bear DE, Segaran E, Beale R, et al. Trial of the route of early nutritional support in critically ill adults. N Engl J Med. 2014;371:1673–84.

    Article  PubMed  CAS  Google Scholar 

  34. Wijdicks EFM. Cushing’s ulcer: the eponym and his own. Neurosurgery. 2011;68:1695–8.

    Article  PubMed  Google Scholar 

  35. Lewis E. Gastroduodenal ulceration and haemorrhage of neurogenic origin. Br J Surg. 1973;60:279–83.

    Article  CAS  PubMed  Google Scholar 

  36. Bashir A, Cohen-Gadol A, Kemp W, Dababneh H. Cushing′s ulcer: further reflections. Asian J Neurosurg. 2015;10:87.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Venkatesh B, Townsend S, Boots RJ. Does splanchnic ischaemia occur in isolated neurotrauma? A prospective observational study. Crit Care Med. 1999;27:1175–80.

    Article  CAS  PubMed  Google Scholar 

  38. Koivisto T, Vapalahti M, Parviainen I, Takala J. Gastric tonometry after subarachnoid hemorrhage. Intensive Care Med. 2001;27:1614–21.

    Article  CAS  PubMed  Google Scholar 

  39. Hernandez G, Hasbun P, Velasco N, Wainstein C, Bugedo G, Bruhn A, et al. Splanchnic ischaemia and gut permeability after acute brain injury secondary to intracranial hemorrhage. Neurocrit Care. 2007;7:40–4.

    Article  PubMed  Google Scholar 

  40. Kao CH, ChangLai SP, Chieng PU, Yen TC. Gastric emptying in head-injured patients. Am J Gastroenterol. 1998;93:1108–12.

    Article  CAS  PubMed  Google Scholar 

  41. Hang CH, Shi JX, Li JS, Wu W, Yin HX. Alterations of intestinal mucosa structure and barrier function following traumatic brain injury in rats. World J Gastroenterol. 2003;9:2776–81.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Badjatia N, Vespa P. Monitoring nutrition and glucose in acute brain injury. Neurocrit Care. 2014;21:159–67.

    Article  CAS  Google Scholar 

  43. Kinoshita K, Moriya T, Utagawa A, Sakurai A, Mukoyama T, Furukawa M, et al. Change in brain glucose after enteral nutrition in subarachnoid hemorrhage. J Surg Res. 2010;162:221–4.

    Article  CAS  PubMed  Google Scholar 

  44. Helbok R, Schmidt JM, Kurtz P, Hanafy KA, Fernandez L, Stuart RM, et al. Systemic glucose and brain energy metabolism after subarachnoid hemorrhage. Neurocrit Care. 2010;12:317–23.

    Article  CAS  PubMed  Google Scholar 

  45. Kurtz P, Claassen J, Schmidt JM, Helbok R, Hanafy KA, Presciutti M, et al. Reduced brain/serum glucose ratios predict cerebral metabolic distress and mortality after severe brain injury. Neurocrit Care. 2013;19:311–9.

    Article  CAS  PubMed  Google Scholar 

  46. Zarbock SD, Steinke D, Hatton J, Magnuson B, Smith KM, Cook AM. Successful enteral nutritional support in the neurocritical care unit. Neurocrit Care. 2008;9:210–6.

    Article  PubMed  Google Scholar 

  47. Chapple LS, Chapman MJ, Lange K, Deane AM, Heyland DK. Nutrition support practices in critically ill head-injured patients: a global perspective. Crit Care. 2015;20:6.

    Article  Google Scholar 

  48. Borzotta AP. Enteral versus parenteral nutrition after severe closed head injury. J Trauma. 1994;37:459–68.

    Article  CAS  PubMed  Google Scholar 

  49. Weekes E, Elia M. Observations on the patterns of 24-hour energy expenditure changes in body composition and gastric emptying in head-injured patients receiving nasogastric tube feeding. J Parenter Enter Nutr. 1996;20:31–7.

    Article  CAS  Google Scholar 

  50. Goodman JC, Robertson CS, Grossman RG, Narayan RK. Elevation of tumor necrosis factor in head injury. J Neuroimmunol. 1990;30:213–7.

    Article  CAS  PubMed  Google Scholar 

  51. Helmy A, Carpenter KLH, Menon DK, Pickard JD, Hutchinson PJA. The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab. 2011;31:658–70.

    Article  CAS  PubMed  Google Scholar 

  52. Chioléro R, Schutz Y, Lemarchand T, Felber JP, de Tribolet N, Freeman J, et al. Hormonal and metabolic changes following severe head injury or noncranial injury. JPEN J Parenter Enteral Nutr. 1989;13:5–12.

    Article  PubMed  Google Scholar 

  53. Young B, Ott L, Norton J, Tibbs P, Rapp R, McClain C, et al. Metabolic and nutritional sequelae in the non-steroid treated head injury patient. Neurosurgery. 1985;17:784–91.

    Article  CAS  PubMed  Google Scholar 

  54. Twyman D, Young AB, Ott L, Norton JA, Bivins BA. High protein enteral feedings: a means of achieving positive nitrogen balance in head injured patients. JPEN J Parenter Enteral Nutr. 1985;9:679–84.

    Article  CAS  PubMed  Google Scholar 

  55. Härtl R, Gerber LM, Ni Q, Ghajar J. Effect of early nutrition on deaths due to severe traumatic brain injury. J Neurosurg. 2008;109:50–6.

    Article  PubMed  Google Scholar 

  56. Perel P, Yanagawa T, Bunn F, Ig R, Wentz R. Nutritional support for head-injured patients (Review). Cochrane Rev. 2008;(4). doi:10.1002/14651858.CD001530.pub2.

  57. Bratton S, Chestnut R, Ghajar J, McConnell Hammond FF, Harris O, Hartl R, et al. Guidelines for the management of severe traumatic brain injury 3rd edition. J Neurotrauma. 2007;24:Suppl 1:S1–106.

    Article  Google Scholar 

  58. Falcão de Arruda IS, de Aguilar-Nascimento JE. Benefits of early enteral nutrition with glutamine and probiotics in brain injury patients. Clin Sci (Lond). 2004;106:287–92.

    Article  Google Scholar 

  59. Connolly ES, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2012;43:1711–37.

    Article  PubMed  Google Scholar 

  60. Esper DH, Coplin WM, Carhuapoma JR, Esper DH, Coplin WM, Carhuapoma JR. Energy expenditure in patients with nontraumatic intracranial hemorrhage. Jpen J Parenter Enter Nutr. 2006;30:71–5.

    Article  Google Scholar 

  61. Kasuya H, Kawashima A, Namiki K, Shimizu T, Takakura K. Metabolic profiles of patients with subarachnoid hemorrhage treated by early surgery. Neurosurgery. 1998;42:1265–8.

    Article  Google Scholar 

  62. Nagano A, Yamada Y, Miyake H, Domen K, Koyama T. Increased resting energy expenditure after endovascular coiling for subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2016;25(4):813–8.

    Article  PubMed  Google Scholar 

  63. Moussouttas M, Huynh TT, Khoury J, Lai EW, Dombrowski K, Pello S, et al. Cerebrospinal fluid catecholamine levels as predictors of outcome in subarachnoid hemorrhage. Cerebrovasc Dis. 2012;33:173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moussouttas M, Lai EW, Khoury J, Huynh TT, Dombrowski K, Pacak K. Determinants of central sympathetic activation in spontaneous primary subarachnoid hemorrhage. Neurocrit Care. 2012;16:381–8.

    Article  PubMed  Google Scholar 

  65. Moussouttas M, Lai EW, Huynh TT, James J, Stocks-Dietz C, Dombrowski K, et al. Association between acute sympathetic response, early onset vasospasm, and delayed vasospasm following spontaneous subarachnoid hemorrhage. J Clin Neurosci. 2014;21:256–62.

    Article  PubMed  Google Scholar 

  66. Badjatia N, Monahan A, Carpenter A, Zimmerman J, Schmidt JM, Claassen J, et al. Inflammation, negative nitrogen balance, and outcome after aneurysmal subarachnoid hemorrhage. Neurology. 2015;84:680–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jauch EC, Saver JL, Adams HP, Bruno A, Connors JJB, Demaerschalk BM, et al. Guidelines for the early management of patients with acute ischaemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44:870–947.

    Article  PubMed  Google Scholar 

  68. Hemphill JC, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46:2032–60.

    Article  PubMed  Google Scholar 

  69. Davalos A, Ricart W, Gonzalez-Huix F, Soler S, Marrugat J, Molins A, et al. Effect of malnutrition after acute stroke on clinical outcome. Stroke. 1996;27:1028–32.

    Article  CAS  PubMed  Google Scholar 

  70. Chalela JA, Haymore J, Schellinger PD, Kang D-W, Warach S. Acute stroke patients are being underfed: a nitrogen balance study. Neurocrit Care. 2004;1:331–4.

    Article  PubMed  Google Scholar 

  71. Meldrum BS, Nilsson B. Cerebral blood flow and cerebral metabolic rate in prolonged epileptic seizures induced in rats by bicuculline. Brain. 1976;99:523–42.

    Article  CAS  PubMed  Google Scholar 

  72. Folbergrová J, Ingvar M, Siesjö BK. Metabolic changes in cerebral cortex, hippocampus, and cerebellum during sustained bicuculline-induced seizures. J Neurochem. 1981;37:1228–38.

    Article  PubMed  Google Scholar 

  73. Glauser T, Shinnar S, Gloss D, Alldredge B, Arya R, Bainbridge J, et al. Evidence-based guideline: Treatment of convulsive status epilepticus in children and adults: report of the guideline committee of the American epilepsy society. Epilepsy Curr. 2016;16:48–61.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Brophy GM, Bell R, Claassen J, Alldredge B, Bleck TP, Glauser T, et al. Guidelines for the evaluation and management of status epilepticus. Neurocrit Care. 2012;17:3–23.

    Article  PubMed  Google Scholar 

  75. Maegaki Y, Kurozawa Y, Tamasaki A, Togawa M, Tamura A, Hirao M, et al. Early predictors of status epilepticus-associated mortality and morbidity in children. Brain Dev. 2015;37:478–86.

    Article  PubMed  Google Scholar 

  76. Rathakrishnan R, Sidik NP, Huak CY, Wilder-Smith EP. Generalised convulsive status epilepticus in Singapore: clinical outcomes and potential prognostic markers. Seizure. 2009;18:202–5.

    Article  PubMed  Google Scholar 

  77. Frier BM. Hypoglycaemia in diabetes mellitus: epidemiology and clinical implications. Nat Rev Endocrinol. 2014;10:711–22.

    Article  CAS  PubMed  Google Scholar 

  78. Bindoff LA, Engelsen BA. Mitochondrial diseases and epilepsy. Epilepsia. 2012;53:92–7.

    Article  CAS  PubMed  Google Scholar 

  79. DeVivo D, Trifiletti R, Jacobson R, Ronen G, Behmand R, Harik S. Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures and developmental delay. N Engl J Med. 1991;325:703–9.

    Article  CAS  Google Scholar 

  80. Wilder R. The effects of ketonemia on the course of epilepsy. Mayo Clin Proc. 1921;2:307–8.

    Google Scholar 

  81. Stafstrom CE. Dietary approaches to epilepsy treatment: old and new options on the menu. Epilepsy Curr. 2004;4:215–22.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Thakur KT, Probasco JC, Hocker SE, Kossoff EH, Roehl K, Henry B, et al. Ketogenic diet for adults in super-refractory status epilepticus Ketogenic diet for adults in super-refractory status epilepticus. Neurology. 2014;82:665–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kossoff EH, Rowley H, Sinha SR, Vining EPG. A prospective study of the modified Atkins diet for intractable epilepsy in adults. Epilepsia. 2008;49:316–9.

    Article  CAS  PubMed  Google Scholar 

  84. Powner DJ. In my opinion: serum albumin should be maintained during neurocritical care. Neurocrit Care. 2011;14:482–8.

    Article  PubMed  Google Scholar 

  85. Oertel MF, Hauenschild A, Gruenschlaeger J, Mueller B, Scharbrodt W, Boeker DK. Parenteral and enteral nutrition in the management of neurosurgical patients in the intensive care unit. J Clin Neurosci. 2009;16:1161–7.

    Article  PubMed  Google Scholar 

  86. Dorfman JD, Burns JD, Green DM, DeFusco C, Agarwal S. Decompressive laparotomy for refractory intracranial hypertension after traumatic brain injury. Neurocrit Care. 2011;15:516–8.

    Article  PubMed  Google Scholar 

  87. Joseph DK, Dutton RP, Aarabi B, Scalea TM. Decompressive laparotomy to treat intractable intracranial hypertension after traumatic brain injury. J Trauma. 2004;57:687–95.

    Article  PubMed  Google Scholar 

  88. Weng Y, Sun S. Therapeutic hypothermia after cardiac arrest in adults: mechanism of neuroprotection, phases of hypothermia, and methods of cooling. Crit Care Clin. 2012;28:231–43.

    Article  PubMed  Google Scholar 

  89. Andrews PJD, Sinclair HL, Rodriguez A, Harris BA, Battison CG, Rhodes JKJ, et al. Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med. 2015;373:2403–12.

    Article  CAS  PubMed  Google Scholar 

  90. Marion DW, Penrod LE, Kelsey SF, Obrist WD, Kochanek PM, Palmer AM, et al. Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med. 1997;336:540–6.

    Article  CAS  PubMed  Google Scholar 

  91. Kuramatsu JB, Kollmar R, Gerner ST, MadŽar D, Pisarčíková A, Staykov D, et al. Is hypothermia helpful in severe subarachnoid hemorrhage? An exploratory study on macro vascular spasm, delayed cerebral infarction and functional outcome after prolonged hypothermia. Cerebrovasc Dis. 2015;40:228–35.

    Article  PubMed  Google Scholar 

  92. Karnatovskaia LV, Lee AS, Festic E, Kramer CL, Freeman WD. Effect of prolonged therapeutic hypothermia on intracranial pressure, organ function, and hospital outcomes among patients with aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2014;21:451–61.

    Article  PubMed  Google Scholar 

  93. Seule M, Muroi C, Sikorski C, Hugelshofer M, Winkler K, Keller E. Therapeutic hypothermia reduces middle cerebral artery flow velocity in patients with severe aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2014;20:255–62.

    Article  CAS  PubMed  Google Scholar 

  94. Gasser S, Khan N, Yonekawa Y, Imhof HG, Keller E. Long-term hypothermia in patients with severe brain oedema after poor-grade subarachnoid hemorrhage: feasibility and intensive care complications. J Neurosurg Anesthesiol. 2003;15:240–8.

    Article  PubMed  Google Scholar 

  95. Su Y, Fan L, Zhang Y, Zhang Y, Ye H, Gao D, et al. Improved neurological outcome with mild hypothermia in surviving patients with massive cerebral hemispheric infarction. Stroke. 2016;47:457–63. doi:10.1161/STROKEAHA.115.009789.

    Article  CAS  PubMed  Google Scholar 

  96. van der Worp HB, Macleod MR, Bath PMW, Demotes J, Durand-Zaleski I, Gebhardt B, et al. EuroHYP-1: European multicenter, randomized, phase III clinical trial of therapeutic hypothermia plus best medical treatment vs. best medical treatment alone for acute ischaemic stroke. Int J Stroke. 2014;9:642–5.

    Article  PubMed  Google Scholar 

  97. Rincon F, Friedman DP, Bell R, Mayer SA, Bray PF. Targeted temperature management after intracerebral hemorrhage (TTM-ICH): methodology of a prospective randomized clinical trial. Int J Stroke. 2014;9:646–51.

    Article  PubMed  Google Scholar 

  98. Staykov D, Wagner I, Volbers B, Doerfler A, Schwab S, Kollmar R. Mild prolonged hypothermia for large intracerebral hemorrhage. Neurocrit Care. 2013;18:178–83.

    Article  PubMed  Google Scholar 

  99. Abdullah J, Husin A. Intracerebral hemorrhage research. Acta Neurochir Suppl. 2011;111:421–4.

    Article  PubMed  Google Scholar 

  100. Legriel S, Pico F, Tran-Dinh Y-R, Lemiale V, Bedos J-P, Resche-Rigon M, et al. Neuroprotective effect of therapeutic hypothermia versus standard care alone after convulsive status epilepticus: protocol of the multicentre randomised controlled trial HYBERNATUS. Ann Intensive Care. 2016;6:54.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Bennett AE, Hoesch RE, Dewitt LD, Afra P, Ansari SA. Therapeutic hypothermia for status epilepticus: a report, historical perspective, and review. Clin Neurol Neurosurg. 2014;126:103–9.

    Article  PubMed  Google Scholar 

  102. Corry JJ, Dhar R, Murphy T, Diringer MN. Hypothermia for refractory status epilepticus. Neurocrit Care. 2008;9:189–97.

    Article  CAS  PubMed  Google Scholar 

  103. The Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549–56.

    Article  Google Scholar 

  104. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–63.

    Article  PubMed  Google Scholar 

  105. Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted temperature management at 33 °C versus 36 °C after cardiac arrest. N Engl J Med. 2013;369:2197–206.

    Article  CAS  PubMed  Google Scholar 

  106. Oshima T, Furukawa Y, Kobayashi M, Sato Y, Nihei A, Oda S. Fulfilling caloric demands according to indirect calorimetry may be beneficial for post cardiac arrest patients under therapeutic hypothermia. Resuscitation. 2015;88:81–5.

    Article  PubMed  Google Scholar 

  107. Williams ML, Nolan JP. Is enteral feeding tolerated during therapeutic hypothermia? Resuscitation. 2014;85:1469–72.

    Article  PubMed  Google Scholar 

  108. Dobak S, Rincon F. “Cool” topic: feeding during moderate hypothermia after intracranial hemorrhage. J Parenter Enter Nutr. 2016. pii: 0148607116655448.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Abdelmalik.

Ethics declarations

Conflict of interest

The authors have no financial conflicts to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelmalik, P.A., Dempsey, S. & Ziai, W. Nutritional and Bioenergetic Considerations in Critically Ill Patients with Acute Neurological Injury. Neurocrit Care 27, 276–286 (2017). https://doi.org/10.1007/s12028-016-0336-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-016-0336-9

Keywords

Navigation