Skip to main content

Advertisement

Log in

Integrating core subtractive proteomics and reverse vaccinology for multi-epitope vaccine design against Rickettsia prowazekii endemic typhus

  • ORIGINAL ARTICLE
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Rickettsia prowazekii is an intracellular, obligate, gram-negative coccobacillus responsible for epidemic typhus. Usually, the infected body louse or its excrement when rubbed into the skin abrasions transmits the disease. The infection with R. prowazekii causes the highest death rate (> 20% without antibiotic treatment and now 1–7%), followed by epidemic typhus, which often manifests in unsanitary conditions (up to 15–30%). Conventionally, vaccine design has required pathogen growth and both assays (in vivo and in vitro), which are costly and time-consuming. However, advancements in bioinformatics and computational biology have accelerated the development of effective vaccine designs, reducing the need for traditional, time-consuming laboratory experiments. Subtractive genomics and reverse vaccinology have become prominent computational methods for vaccine model construction. Therefore, the RefSeq sequence of Rickettsia prowazekii (strain Madrid E) (Proteome ID: UP000002480) was subjected to subtractive genomic analysis, including factors such as non-similarity to host proteome, essentiality, subcellular localization, antigenicity, non-allergenicity, and stability. Based on these parameters, the vaccine design process selected specific proteins such as outer membrane protein R (O05971_RICPR PETR; OmpR). Eventually, the OmpR was subjected to a reverse vaccinology approach that included molecular docking, immunological simulation, and the discovery of B-cell epitopes and MHC-I and MHC-II epitopes. Consequently, a chimeric or multi-epitope-based vaccine was proposed by selecting the V11 vaccine and its 3D structure modeling along with molecular docking against TLR and HLA protein, in silico simulation, and vector designing. The obtained results from this investigation resulted in a new perception of inhibitory ways against Rickettsia prowazekii by instigating novel immunogenic targets. To further assess the efficacy and protective ability of the newly designed V11 vaccine against Rickettsia prowazekii infections, additional evaluation such as in vitro or in vivo immunoassays is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Turco J. Involvement of pore formation and osmotic lysis in the rapid killing of gamma interferon-pretreated C166 endothelial cells by Rickettsia prowazekii. Trop Med Infect Dis Poverty. 2022;7(8):163.

    Article  Google Scholar 

  2. Barnwal RP, et al. Comparative structure, dynamics and evolution of acyl-carrier proteins from Borrelia burgdorferi, Brucella melitensis and Rickettsia prowazekii. Biochem J. 2020;477(2):491–508.

    Article  CAS  PubMed  Google Scholar 

  3. Chekanova T, Shpynov S. Avidity of IgG to Rickettsia prowazekii and the presence of specific IgM in blood sera for retrospective analysis of the 1998 epidemic typhus outbreak in Russia. J Microbiol Methods. 2020;176: 106034.

    Article  CAS  PubMed  Google Scholar 

  4. Pal M, Dave P. Epidemic typhus: a re-emerging rickettsial zoonosis. ASMI. 2019;2(9):104–7.

    Google Scholar 

  5. Torres-Castro M, et al. Rickettsia rickettsii and Rickettsia typhi in inhabitants from a rural community of southeast Mexico. Rev Peru Med Exp Salud Publica. 2022;39:124–5.

    Article  PubMed  Google Scholar 

  6. Panatpur A. Identifying novel inhibitors of RpFabG in typhus-inducing Rickettsia prowazekii. 2019 (Doctoral Dissertation).

  7. Abroug N, et al. Rickettsial disease: an underestimated cause of posterior uveitis. Saudi J Ophthalmol. 2022;36(4):374.

    PubMed  PubMed Central  Google Scholar 

  8. Gunasekaran K, Bal D, Varghese GM. Scrub typhus and other rickettsial infections. Indian J Crit Care Med. 2021;25(Suppl 2):S138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rappuoli R, et al. Reverse vaccinology 2.0: human immunology instructs vaccine antigen design. J Exp Med. 2016;213(4):469–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jalal K, et al. Identification of vaccine and drug targets in Shigella dysenteriae sd197 using reverse vaccinology approach. Sci Rep. 2022;12(1):251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khan K, Jalal K, Uddin R. An integrated in silico based subtractive genomics and reverse vaccinology approach for the identification of novel vaccine candidate and chimeric vaccine against XDR Salmonella typhi H58. Genomics. 2022;114(2): 110301.

    Article  CAS  PubMed  Google Scholar 

  12. Sano K, et al. SARS-CoV-2 vaccination induces mucosal antibody responses in previously infected individuals. Nat Commun. 2022;13(1):5135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tosta SF, et al. Multi-epitope based vaccine against yellow fever virus applying immunoinformatics approaches. J Biomol Struct Dyn. 2021;39(1):219–35.

    Article  CAS  PubMed  Google Scholar 

  14. Nosrati M, et al. Designing a multi-epitope vaccine for cross-protection against Shigella spp: an immunoinformatics and structural vaccinology study. Mol Immunol. 2019;116:106–16.

    Article  CAS  PubMed  Google Scholar 

  15. Kakakhel S, et al. Annotation of potential vaccine targets and designing of mRNA-based multi-epitope vaccine against lumpy skin disease virus via reverse vaccinology and agent-based modeling. Bioengineering. 2023;10(4):430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506–15.

  17. Huang Y, et al. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics. 2010;26(5):680–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Luo H, et al. DEG 15, an update of the Database of Essential Genes that includes built-in analysis tools. Nucleic Acids Res. 2021;49(D1):D677–86.

    Article  CAS  PubMed  Google Scholar 

  19. Naorem RS, et al. Identification of putative vaccine and drug targets against the methicillin-resistant Staphylococcus aureus by reverse vaccinology and subtractive genomics approaches. Molecules. 2022;27(7):2083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dorosti H, Zarei M, Nezafat N. Proteome exploration of human coronaviruses for identifying novel vaccine candidate: a hierarchical subtractive genomics and reverse vaccinology approach. Recent Pat Biotechnol. 2023;17(2):163–75.

    Article  CAS  PubMed  Google Scholar 

  21. Sabzi S, et al. Genome-wide subtraction analysis and reverse vaccinology to detect novel drug targets and potential vaccine candidates against Ehrlichia chaffeensis. Appl Biochem Biotechnol. 2023;195(1):107–24.

    Article  CAS  PubMed  Google Scholar 

  22. Yu NY, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010;26(13):1608–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aiman S, et al. Comparative Proteomics and genome-wide druggability analyses prioritized promising therapeutic targets against drug-resistant Leishmania tropica. Microorganisms. 2023;11(1):228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007;8(1):1–7.

    Article  Google Scholar 

  25. Gupta S, et al. In silico approach for predicting toxicity of peptides and proteins. PLoS ONE. 2013;8(9): e73957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jalal K, Khan K, Uddin R. Immunoinformatic-guided designing of multi-epitope vaccine construct against Brucella suis 1300. Immunol Res. 2023;71(2):247–66.

  27. Ponomarenko JV, Bourne PE. Antibody-protein interactions: benchmark datasets and prediction tools evaluation. BMC Struct Biol. 2007;7(1):1–19.

    Article  Google Scholar 

  28. Jalal K, Khan K, Basharat Z, Abbas MN, Uddin R, Ali F, ..., Hassan SSU. Reverse vaccinology approach for multi-epitope centered vaccine design against delta variant of the SARS-CoV-2. Environ Sci Pollut Res. 2022;29(40):60035–53.

  29. Karplus PA, Schulz GE. Prediction of chain flexibility in proteins. Naturwissenschaften. 1985;72(4):212–3.

    Article  CAS  Google Scholar 

  30. Das BK, Chakraborty D. Epitope-based potential vaccine candidate for humoral and cell-mediated immunity to combat severe acute respiratory syndrome coronavirus 2 pandemic. J Phys Chem Lett. 2020;11(22):9920–30.

    Article  CAS  PubMed  Google Scholar 

  31. Jalal K, et al. Pan-genome reverse vaccinology approach for the design of multi-epitope vaccine construct against Escherichia albertii. Int J Mol Sci. 2021;22(23):12814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gasteiger E, et al. Protein identification and analysis tools on the ExPASy server. Springer; 2005.

    Book  Google Scholar 

  33. Kiefer F, et al. The SWISS-MODEL repository and associated resources. Nucleic Acids Res. 2009;37(suppl_1):D387–92.

    Article  CAS  PubMed  Google Scholar 

  34. McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics. 2000;16(4):404–5.

    Article  CAS  PubMed  Google Scholar 

  35. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35(suppl_2):W407–10.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Laskowski RA, MacArthur MW, Thornton JM. PROCHECK: validation of protein-structure coordinates. 2006.

  37. Jalal K, et al. Reverse vaccinology approach for multi-epitope centered vaccine design against delta variant of the SARS-CoV-2. Environ Sci Pollut Res. 2022;29(40):60035–53.

    Article  CAS  Google Scholar 

  38. Tahir ulQamar M, et al. Reverse vaccinology assisted designing of multiepitope-based subunit vaccine against SARS-CoV-2. Infect Dis Poverty. 2020;9(1):1–14.

    Google Scholar 

  39. Aiman S, et al. Core genome mediated potential vaccine targets prioritization against Clostridium difficile via reverse vaccinology-an immuno-informatics approach. J Biol Res-Thessaloniki. 2022;29.

  40. Grote A, et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005;33(2_suppl):W526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Amanat F, et al. SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD, and S2. Cell. 2021;184(15):3936-3948. e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Albekairi TH, et al. Designing of a novel multi-antigenic epitope-based vaccine against E. hormaechei: an intergraded reverse vaccinology and immunoinformatics approach. Vaccines. 2022;10(5):665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tan YC, Lahiri C. Promising Acinetobacter baumannii vaccine candidates and drug targets in recent years. Front Immunol. 2022;13: 900509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jalal K, Khan K, Uddin R. Immunoinformatic-guided designing of multi-epitope vaccine construct against Brucella suis 1300. Immunol Res. 2023;71(2):247–66.

    Article  CAS  PubMed  Google Scholar 

  45. Sankar S, Suganya S, Venkatesan A. Identification and computational validation of TolC derived B-and T-cell epitopes for the development of pan-rickettsial vaccine. 2022.

  46. Naz K, et al. PanRV: pangenome-reverse vaccinology approach for identifications of potential vaccine candidates in microbial pangenome. BMC Bioinformat. 2019;20:1–10.

    Article  Google Scholar 

  47. Singhvi N, Singh Y, Shukla P. Computational approaches in epitope design using DNA binding proteins as vaccine candidate in Mycobacterium tuberculosis. Infect Genet Evol. 2020;83: 104357.

    Article  PubMed  Google Scholar 

  48. Sauer K, Harris T. An effective COVID-19 vaccine needs to engage T cells. Front Immunol. 2020;11: 581807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pandey RK, Sundar S, Prajapati VK. Differential expression of miRNA regulates T cell differentiation and plasticity during visceral leishmaniasis infection. Front Microbiol. 2016;7:206.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Aslam S, et al. Designing a multi-epitope vaccine against chlamydia trachomatis by employing integrated core proteomics, immuno-informatics and in silico approaches. Biology. 2021;10(10):997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Compton T, et al. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol. 2003;77(8):4588–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Khatoon N, Pandey RK, Prajapati VK. Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep. 2017;7(1):8285.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gori A, et al. Peptides for immunological purposes: design, strategies and applications. Amino Acids. 2013;45:257–68.

    Article  CAS  PubMed  Google Scholar 

  54. Chen R. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv. 2012;30(5):1102–7.

    Article  CAS  PubMed  Google Scholar 

  55. Li J, et al. Reverse vaccinology approach for the identifications of potential vaccine candidates against Salmonella. Int J Med Microbiol. 2021;311(5): 151508.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Higher Education Commission of Pakistan for providing financial support under National Research Program for Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reaz Uddin.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants and animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ariba Khan and Muhammad Hassan Khanzada have equal authorship.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Khanzada, M.H., Khan, K. et al. Integrating core subtractive proteomics and reverse vaccinology for multi-epitope vaccine design against Rickettsia prowazekii endemic typhus. Immunol Res 72, 82–95 (2024). https://doi.org/10.1007/s12026-023-09415-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-023-09415-y

Keywords

Navigation